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Abstract

Digital restoration of the scratches in image sequences is essential for recover-
ing of the old movies as well as for online processing in scanning and duplicating
machines.

The first part of this thesis describes review of digital movie representation.
Next is introduced the survey of contemporary methods for motion estimation
and scratch restoration in image sequence. The results of two simple motion
estimation methods are discussed.

The main contribution of this thesis is a new algorithm for the scratch restora-
tion in multi-spectral image sequence based on causal adaptive multidimensional
prediction by 3D and 3.5D causal autoregressive models. The predictor use avail-
able information from corrupted pixel surrounding due to spectral, spatial and
temporal correlation in multispectral image data, and adaptively updates it’s pa-
rameters. The model assumes white Gaussian noise in each spectral layer, but
layers can be mutually correlated. Experimental results captivate that proposed
method easily outperforms any mentioned classical scratch restoration method.

Abstrakt

Digitálńı restaurace filmových sekvenćı je nezbytná pro záchranu arch́ıvńıch
filmů, opravu chyb zp̊usobených duplikaćı originálu nebo digitálńıch dat znehod-
nocených během sńımáńı.

Prvńı část této práce shrnuje přehled použ́ıvané reprezentace digitálńıch fil-
mových dat. Stejně tak je zmı́něn přehled současných metod detekce pohybu
a restaurace poškozených dat v obrazové sekvenci. Jsou zde zhodnoceny výsledky
dvou jednoduchých metod detekce pohybu.

Hlavńım př́ınosem této práce je nový algoritmus pro odstraněńı poškozených
dat v barevné filmové sekvenci, založený na výpočtu kauzálńı, adaptivńı, v́ıce-
dimenzionálńı predikce pomoćı 3D a 3.5D kauzálńıho autoregresivńıho modelu.
Prediktor použ́ıvá pro odhad svých parametr̊u dostupnou informaci o spektrálńı,
prostorové a časové závislosti v datové struktuře v okoĺı každého poškozeného pi-
xelu. Na základě těchto znalost́ı si adaptivně upravuje své parametry. Navržený
model předpokládá b́ılý Gausovský šum v každém spektrálńım pásmu, přičemž
data v jednotlivých pásmech mohou být vzájemně závislá. Z experimentálńıch
výsledk̊u vyplývá, že navržená metoda má nejlepš́ı výsledky v porovnáńı s kla-
sickými metodami restaurace obrazu, popsanými v práci.
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Poděkováńı
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pod mým jménem.

V Praze dne 12. ledna 2002



List of Notations and Acronyms

r1, r2, r3, r4 row, column, spectral and time index
r multiindex r = {r1, r2, r3, r4}
s1, s2, s3, s4 row, column, spectral and time shift
• means all possible values of the corresponding index
dr1,r2,r4 displacement vector between frames r4, r4 − 1 on frame coordi-

nates r1, r2

d the number of spectral bands
Ir causal contextual neighbourhood
η cardinality of causal contextual neighbourhood Ir

γ predictor parameter matrix
Yr predicted values on location defined by multiindex r

Xr data vector on location defined by multiindex r

β(r) the number of model movements on image plane
σ length of model history
ρ exponential forgetting factor
ξ the number of quantization levels in each spectral band
S scratch coordinates set (corrupted data)
MAD Mean Absolute Difference
MADA Mean Absolute Differencee averaged in all spectral bands

2D, 3D, 3.5D, 4D two, three, three and half, four Dimensional
BM Block Matching
CAR Causal AutoRegressive
CN Contextual Neighbourhood
GB Gradient Based
MC Motion Compensation
ME Motion Estimation
MSE Mean Squared Error
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Chapter 1

Introduction

From the dawn of cinematography1 till today, movies have been recorded on
media which suffer by different degradation processes during longtime storage. In
records on celluloid or magnetic material defects often occur caused by extensive
usage of film material as well as defects caused by mold or humidity in improper
storage environment. This corruption occurs also when copying film negatives.

A short overview of defects [30] which can appear in historical and sometimes
also in contemporary film materials follows.

Dust and dirt are very often defects in historical movie. They are caused
mostly by the pollution during the movie acquisition or the duplication
process. The pollution is local on the film material, thus the visible effect
in a movie is the appearance of bright or dark spots only on some frames
of the movie.

Scratches appear in the direction of the film strip over more than one frame of
the film. Scratches are caused by film transport or by the developing process
when there are particles in the developer’s machine. Scratches caused by
the film transport are exactly parallel to the film-strip perforation, but
scratches caused by mentioned particles can change their position up to 5%
of the film width a few frames of the movie sequence.

Missing or heavily corrupted frames are result of improper storage envi-
ronment of the film material and the long storage time. In some papers
we can find notion blotch which stands usually for large corrupted area.

Mold results from an improper storage environment for the film materials. It
appears periodically every twenty to thirty frames and produces observable
brightness or colour variations. Different chemical reactions cause different
types of mold. There is possible to obtain lightening, darkening and local
discontinuous defects caused by the mold.

1the first film projection was performed in Paris on 28th December 1895 by Auguste and

Louise Lumière
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Flickering is visible global brightness or colour variation between successive
movie frames. Inside a frame the variation is homogeneous. This defect
occurs mostly in historical film and it is caused by the different exposure
time during the movie acquisition. Flickering can be caused in modern
cameras by interference between the lighting and the exposure.

Jittering is defect which appears during conversion of the analogue video signal
into a digital form. During sampling the frame grabber must synchronise
to the incoming lines and frames. In case that incoming video signal is
a noisy one or is affected by timing distortion, the frame grabber is unable
to locate start and end of lines and frames in this video signal. Hence
a digitised image is obtained where the lines are displaced relative to each
other due to bad line synchronisation.

Image vibrations originate in lack mechanical accuracy of film-transporting
systems in old movie cameras or duplication equipment. Image vibration
can originate also from unstable camera attachment during the movie ac-
quisition.

Captions or subtitles appears on a part of the movie and are created in the
duplication step.

To save historical materials in the film and TV archives, original films have to
be recorded on time-stable media (usually with digital supports). The constant
growth of communication media (satellite and cable TV, video on demand, etc.)
widing a new market for this movie resources. In order to keep a copy of the film
sequence as close as possible to the original one, a restoration phase is necessary.
It is necessary to employ digital film restoration. The digital film restoration has
to solve several kinds of defects frequently encountered in film sequences, as was
mentioned above. For each kind of the defect usually different kind of restoration
algorithm is needed.

There are already several manual and semiautomatic systems for digital film
restoration as the Cineon system by Kodak, the Domino system by Quantel, the
Flame system by Discreet logic, the Matador system by Avid, but they are aimed
mainly for generating of visual effects and movie editing with some restoration
skills but their ability for on-line restoration are still constrained.

Between years 1994-1999 there was carried out an international project AU-
RORA (AUtomatic Restoration of ORiginal film and video Archives) [28, 7]. The
main aim of the AURORA project was an automatic real time movie restoration
with control of level of correction by the user. The project is considered to be
very successful. The original goal, of having a complete television archive restora-
tion system has been reached but significant improvements and developments are
still progressing. In 1999 started the next project BRAVA (Broadcast Archives
Restoration Through Video Analysis) [29] which aims at developing further the
results of the AURORA project.
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Digital sequence restoration is quite new area for study. It’s importance grew
with coming of more powerful computers in late nineteens, hence it was possi-
ble to apply it for recovering of corrupted movies [32]. Before this date most of
the researchers in image processing has concentrated on stills (except video com-
pression research). The first approach in sequence restoration was only motion
compensated median filtering. This method is fast and enables many modifi-
cations by the filter masks shape [17, 18, 3]. Later researchers tried to treat
image sequences as a spatio-temporal signal. The model based methods of re-
construction were developed. The 3D autoregressive modelling for suppressing of
scratches in black&white movies was introduced also in [17, 18] as well as filtering
by the Wiener filter. More sophisticated model-based methods use most often
Markov random field type of models either in the form of wide sense Markov
(regressive models) or strong Markov models. Next approach in interpolation of
missing data in image sequences based on combination of autoregressive models
and Markov-random fields is in [34, 19]. Another Monte Carlo methods as Gibb’s
sampler and Markov chains applied for missing data reconstruction in colour im-
age sequences are mentioned in [4, 10]. These methods have the main problem in
time consuming iterative solution and have to solve also iteration stopping prob-
lem. Additional details of some contemporary missing data restoration methods
for image sequences are mentioned in section 4.3.

In this thesis we present a scratch removal algorithm. The scratch defect don’t
follow exactly the above proposed scratch definition. So by the scratch notion,
in this thesis, we mean every coherent region with missing data (simultaneously
in all spectral bands) in a movie frame.

A typical image sequence restoration system would involve usually 3 steps:
motion estimation, detection of the missing data regions, restoration of detected
regions. Our field of concern in thesis is mainly the restoration step by model-
based approach.

The modelling of colour image sequence isn’t easy task, because it requires
four independent indices. Horizontal and vertical spatial coordinates in the frame,
spectral band and time coordinates. This leads to a 4D model of colour image se-
quences, where processed data are spectrally, spatially and temporally correlated.
Such approach has unfortunately huge computational demands, requires a huge
training data set and leads to non-linear parameter estimation, hence it has to
solve problem when to stop iterative process and algorithm is then sometimes
numerically unstable. Due to this reasons the 4D model does not have analytic
solution. To overcome this drawback the 3.5D model is suggested. The assump-
tion for the analytical solution of the 3.5D model is white Gaussian noise in each
spectral layer. The reason for “3.5D” notion is caused by the fact, that we neglect
the part of information about temporal correlation between data in consecutive
frames in the image sequence. Thanks to this we can treat data from different
frames (specified by the contextual neighbourhood) in the same way, so we attach
to each data information about its shift according to predicted pixel placement.
The problem is then how to determine the spatial shift of moving regions be-
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tween successive frames, because the same region hasn’t the same placement in
both frames due to its motion during the image sequence acquisition. To solve
this task some motion estimation in colour image sequence is necessary. However
developing of motion estimation method wasn’t goal of this thesis, so an simple
block matching motion estimation method and also its iterative improvement [37]
were implemented. We tried to employ these methods for motion compensation
in the proposed restoration method.

The proposed new type of scratch removal algorithm is based on a causal
adaptive multidimensional prediction. The predictor use available information
from the failed pixel surrounding due to spectral and spatial correlation of multi-
spectral data but not any information from failed pixel itself. Predictor parame-
ters cannot be directly identified so a special approximation is introduced.

The thesis is divided to chapters as follows.

Chapter 2: Digital Movie Representation A short review of common dig-
ital movie formats is introduced and is mentioned difference between lossless and
lossy compression methods.

Chapter 3: Methods for Motion Estimation This chapter describe princi-
ple of common Motion Estimation methods (Block Matching and Gradient meth-
ods) and discuss their properties. Image sequences for testing are described. The
results of two implemented simple motion estimation methods discussed. Finally
applying of motion compensation for the scratch restoration is described.

Chapter 4: The Scratch Restoration Methods Overview A simple meth-
ods for scratch restoration as averaging, Median filtering, Linear and Quadratic
interpolation are introduced. These simple methods as well as other previously
published methods for the scratch restoration are discussed.

Chapter 5: The Scratch Restoration by the Causal Autoregressive
Model A new method based on causal adaptive multidimensional prediction
by 3D and 3.5D CAR model is proposed. The employing of this method for the
scratch restoration is introduced.

Chapter 6: Results and Discussion Used testing criteria are described.
Obtained results of 3D and 3.5D CAR model are compared with the classical
method’s performance and properties of proposed method are discussed.

Chapter 7: Conclusions and Further Research This chapter summarises
achieved results of image restoration based on 3D and 3.5D CAR model and
mention also problems in image sequence restoration by subject of a further
beyond scope of research.
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Chapter 2

Digital Movie Representation

Digital video processing and storage requires a digital video representation. Sev-
eral video formats were developed during last period. A short overview of the
most important formats which are popular for digital movie presentation and
processing is subject of this chapter. This and the additional information in this
field are in [9, 35, 33, 20].

Digitising a video sequence results in extremely high data rates. For example,
a television image with a resolution of 720 x 576 pixels and a colour depth of 16
bits produces a data stream of 1.35 MB per individual frame. As 25 frames per
second are required to avoid jumpy video scenes, a gigantic data flow of 33.75
MB/s is produced! For this reason, it is absolutely inevitable that video signals
are compressed so they can remove or reorganise data in order to reduce the size
of digital files. One distinguishes between lossless compression methods and lossy
compression.

2.1 Compression

2.1.1 Lossless compression

Lossless compression retains the original data so that the individual image se-
quences remain the same after compression. Most lossless compression tech-
niques use run length encoding that removes images areas that use the same
colour. However, the compression rate is not better than 3:1, depending on the
complexity of individual images. In practise, lossless methods play a low-key role
due to their low compression rates. There are two common code optimisation
techniques as follows.

Run Length Encoding Run Length Encoding works by grouping elements that
repeatedly occur and by encoding them with a count value. As the counter
also requires space, elements that occur twice or three times remain un-
coded. This type of compression is used in the graphics field, for example
to display smooth surfaces with a minimum byte count.
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Huffman Encoding The Huffman method encodes often-repeated elements with
a few bits and rare ones with more bits. The number of times the elements
occur is used to determine the respective bit encoding method.

2.1.2 Lossy compression

Lossy compression methods attempt to remove image information that is unlikely
to be noticed by a human observer. These methods do not retain the original
data and some image information is lost. The volume of data lost depends on the
degree of compression. In practise, time compression is gaining in importance.
With this method, the resulting data volume for each individual video sequence
is optimised. Typical folder of lossy compression is MPEG format, which is
described in section 2.2.3.

2.2 Movie Formats

2.2.1 The AVI and ASF Format

One of the oldest formats in the computer world is AVI. The abbreviation ’AVI’
stands for “Audio Video Interlaced”. This video format was created by Microsoft,
which was introduced along with Windows 3.1. AVI, the proprietary format of
Microsoft’s “Video for Windows” application, merely provides a framework for
various compression algorithms such as Cinepak, Intel Indeo, Microsoft Video 1,
Clear Video or IVI. In its first version, AVI supported a maximum resolution of
160 x 120 pixels with a refresh rate of 15 frames per second. The format attained
widespread popularity, as the first video editing systems and software appeared
that used AVI by default. However, there were a number of restrictions leading
from format incompatibility, because each manufacturer adapted the open AVI
format according to his own requirements. AVI is also subject to additional re-
strictions under Windows 95, which make professional work at higher resolutions
more difficult. Despite its age and numerous problems, the AVI format is still
used in semi-professional video editing cards. Many TV cards and graphic boards
with a video input also use the AVI format. These are able to grab video clips at
low resolutions (mostly 320 x 240 pixels). Colour depth specification: Microsoft
Video 1 (CRAM) depth 8 and 16. SuperMac Cinepak (CVID) depth 24. Uncom-
pressed (RGB) depth 8. Run length encoded (RLE8) depth 8. File extension: avi.

The ASF stands for “Active Stream Format”. An active stream format is de-
fined and adopted for a logical structure that encapsulates multiple data streams.
The data streams may be of different media. The data of the data streams is par-
titioned into packets that are suitable for transmission over a transport medium.
The packets may include error correcting information. The packets may also
include clock licenses for dictating the advancement of a clock when the data
streams are rendered. The format of ASF facilitates flexibility and choice of
packet size and in specifying maximum bit rate at which data may be rendered.
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Error concealment strategies may be employed in the packetization of data to
distribute portions of samples to multiple packets. Property information may
be replicated and stored in separate packets to enhance its error tolerance. The
format facilitates dynamic definition of media types and the packetization of data
in such dynamically defined data types within the format. File extension: asf.

The inner structure of AVI and ASF format isn’t published by one can assume
that it is based on MPEG technology.
Advantages: Wide popularity all over the world.
Disadvantages: AVI does not use a single common time-line for playing images
and sounds so these movies may sometimes exhibit some audio/video synchroni-
sation problems. Restricted resolution.

2.2.2 Apple’s Format

The MOV format which originated in the Macintosh world, was also ported to x86
based PC’s. It is the proprietary standard of Apple’s Quicktime application that
simultaneously stores audio and video data. Between 1993 and 1995, Quicktime
(ISO standard for digital media) was superior to Microsoft’s AVI format in both
functionality and quality. The functionality of the latest generation (Quicktime
4.0) also includes the streaming of Internet videos (the real-time transmission
of videos without the need to first download the entire file to the computer).
QuickTime is not really a movie format, but is a software development package
that allows the synchronisation of multiple media streams (video, text, sound
and music). Despite this, Apple’s proprietary format is continually losing popu-
larity with the increasing use of MPEG. Video clips coded with Apple’s format
are still used because of Quicktime’s ability to run on both Macintosh and x86
computers. Format specifications: Apple Graphics (RLE ) depth 1,8,16 and 24.
Apple Animation (SMC) depth 8. Apple Video (RPZA) depth 16. SuperMac
Cinepak (CVID) depth 24. Supports multiple video tracks. Supports animations
with multiple codecs. File extensions: qt, mov.
Advantages: Allows the synchronisation of multiple media streams and stream-
ing of Internet videos. Ability to run on Macintosh and x86 computers.
Disadvantages: Decreasing support of this format with the increasing use of
MPEG.

2.2.3 MPEG Formats

The MPEG formats are by far the most popular standards. The abbreviation
MPEG stands for “Motion Picture Experts Group” - an international organi-
sation that develops standards for the encoding of moving images. In order to
attain widespread use, the MPEG standard only specifies a data model for the
compression of moving pictures and for audio signals. It means that it is not
a definition of coding standard, it is assumed to be only constraint on the data
bit stream. In this way, MPEG remains platform independent. One can currently
differentiate between five standards: MPEG-1,MPEG-2, MPEG-4, MPEG-7, and
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MPEG-21. Let’s take a brief look how MPEG Compression works.

How MPEG Compression works

Subdivision into Macro Blocks The image is split into macro blocks with
a size of 8x8 or 16x16 pixels that are separately handled. In the next step, the
difference between the macro block in image N and the moved macro block in
image N+1 is established (see figure 4). This error image has to be coded and
saved along with the displacement vector in order to monitor the subsequent
error accumulation. Memory space requirements are minimised if the difference
between the moved macro blocks is so small that it’s possible to completely forget
encoding the difference.

In order to code the images (the next step), the following macro block types,
shown in Fig.2.1, are used: the “I” frames are images which are saved in the
equivalent JPEG format and are not dependent on the previous or subsequent
frames. Only the “I” frame (intra coded image) permits direct access to the
individual sections or still frames in a clip. In contrast, “P” frames (predicted
image) are predicted from the previous “I” frame. The most universal image types
are the ”B” frames (bi-directionally interpolated image) that are interpolated
from the previous, or following P or I frame.

image

I B B B BP B B I

2 3 4 5 6 7 8 91

Forward Prediction

Bidirectional Prediction

I

B

P

bidirectionally interpolated
image

predicted
image

intra coded

Figure 2.1: Interframe coding within MPEG format.

The key role in prediction and interpolation play successful estimate of a mo-
tion vectors. For fast motion prediction is commonly used Block Matching (BM)
motion estimator. The motion vector is obtained by minimising a cost function
measuring the mismatch between a block and each predictor candidate.

Motion-compensated interpolation (bidirectional prediction) is a multireso-
lution technique. A sub-signal with low temporal resolution is coded and the
full-resolution signal is obtained by interpolation of the low-resolution signal and
addition of a correction term. The signal to be reconstructed by interpolation is
obtained by adding a correction term to a combination of a past and a future
reference. The motion vector is obtained by minimising a cost function measuring
the mismatch between a block and each predictor candidate.
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Discrete Cosine Transformation (no data loss) The block 8x8 is assigned
to a colour value matrix that is used for the discrete cosine transformation (DCT).
DCT suppresses highly frequent image parts that aren’t apparent to the human
eye. DCT is based on Fourier transformations that present any signal as merged
(superimposed) sine signals of different frequencies and amplitudes. The Fourier
transformation yields frequency and amplitude distribution values from the loca-
tion of pixel values in an image. This means that large, regular areas in the image
are then represented more in the lower frequency parts, whereas finer details are
in the higher range. In our concrete example, DCT transforms the displayed 8x8
macro block into an 8x8 coefficient matrix. The value in the upper left corner of
the coefficient matrix contains the lowest frequency parts. This coefficient at lo-
cation 0,0 is normally referred to as the DC coefficient, whereas the remaining 63
coefficients are termed AC coefficients (AC = Amplitude Coefficient). As there is
normally a solid relationship between the DC coefficients of two subsequent 8x8
blocks, the DC coefficient is encoded as the difference to the predecessor. The
remaining 63 AC coefficients are sorted according to a set pattern.

DCT concentrates the signal energy of a block in the lowest coefficients, espe-
cially in the DC coefficient. The higher AC coefficients are normally 0 or almost
0, because the main part of the visual information of an image lies in a contin-
uously distributed range of values in the lower frequency area. Edges normally
only constitute a small part of an image. After the discrete transformation, the
coefficients are quantised in order to attain an additional compression improve-
ment.

Quantising (high data loss) Quantising is a process that involves adapting
the data encoding precision to the capacity of human perception. Due to the
fact that the eye is not able to monitor changes to fine details very well, the
observer will not notice the slightly reduced display precision. Thus quantization
of the DCT coefficients is important because the combination of quantization
and run-length coding contributes the most of the compression. Finally, adaptive
quantization is one of the key tools to achieve visual quality.

MPEG’s formats overview

MPEG-1 (ISO/IEC 11172-3) was released in 1993 with the objective of achiev-
ing acceptable frame rates and the best possible image quality for moving images
and their sound signals for media with a low bandwidth (1 Mbit/s up to 1,5
Mbit/s). The design goal of MPEG-1 is the ability to randomly access a se-
quence within half a second, without a noticeable loss in quality. For most home
user applications and business applications (image videos, documentation), the
quality offered by MPEG-1 is adequate. MPEG-1 reduces the original data vol-
ume to about 1:35. File extensions: mpg, mpeg.

MPEG-2 (ISO/IEC 13818-3) has been in existence since 1995 and its basic
structure is the same as that of MPEG-1, however it allows data rates up to 100
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Mbit/s and is used for digital TV, video films on DVD-ROM and professional
video studios. MPEG-2 allows the scaling of resolution and the data rate over
a wide range. Due to its high data rate compared with MPEG-1 and the increased
requirement for memory space, MPEG-2 is currently only suitable for playback
in the home user field. The attainable video quality is noticeably better than
with MPEG-1 for data rates of approximately 4 Mbit/s. File extensions: m2v,
mpeg2.

Differences between MPEG-1 and MPEG-2

Although the MPEG-2 format is a more current technology, this format doesn’t
present a major technical improvement over MPEG-1 as far as the basic princi-
ples are concerned. However, some differences have resulted due to the extension
of the specification as well, as changes made to match the requirements of digi-
tal television and future high-resolution television. The most important details
changed are:

• Increase the precision of motion vectors to half-pixels

• Extended error redundancy due to special vectors in interpolated frames

• Selectable precision of discrete cosine transformation

• Further prediction modes and macro blocks

• Scalability (different quality levels in a single video stream)

• Global Motion Compensation

MPEG-4 (ISO/IEC 14496-3) is one of the latest video formats (1999) and its
objective is to get the highest video quality possible for extremely low data rates
in the range between 10 Kbit/s and 1 Mbit/s. Furthermore, the need for data
integrity and loss-free data transmission is paramount as these play an important
role in mobile communications. Something completely new in MPEG-4 is the
organisation of the image contents into independent objects in order to be able
to address or process them individually. So it doesn’t encodes only rectangular
pixels or blocks but also individual objects of the scene. MPEG-4 is used for video
transmission over the Internet for example. Some manufacturers transmitting
moving images to mobile phones. MPEG-4 is intended to form a platform for
this type of data transfer. The new mobile radio standard UMTS is based on
MPEG-4 technology. In Tab.2.1 is comparison of different MPEG formats.

MPEG-7 (Multimedia Content Description Interface) is a standard to describe
multimedia data and can be used independently of other MPEG standards.
MPEG-7 aims at offering a comprehensive set of audio-visual descriptions, which
will form the basis for applications enabling the needed quality access to content,
which implies good storage solutions, high-performance content identification,
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Table 2.1: Comparison of compression formats MPEG-1, MPEG-2, and MPEG-4.

MPEG-1 MPEG-2 MPEG-4
Standard available since 1992 1995 1999
Max. video resolution 352x288 1920x1152 720x576
Default video resolution (PAL) 352x288 720x576 720x576
Default video resolution (NTSC) 352x288 640x480 640x480
Max. audio frequency range 48kHz 96kHz 96kHz
Max. number of audio channels 2 8 8
Max. data rate 3Mbit/s 80Mbit/s 5 to 10Mbit/s
Regular data rate used 1380 Kbit/s 6500Kbit/s 880Kbit/s

(352x288) (720x576) (720x576)
Frames per second (PAL/NTSC) 25/30 25/30 25/30
Video quality satisfactory very good excellent
HW requirements for encoding low high very high
HW requirements for decoding very low medium high

proprietary assignation, and fast, ergonomic, accurate and personalised filtering,
search and retrieval.

MPEG-21 development of this format started recently. It should be a standard
that aims at creating a Multimedia Framework taking into consideration the
different components involved in the delivery of content from the creator to the
user.

DVD video

One example of exploiting of the MPEG format is DVD video (Digital Versatile
Disc). In last years becomes DVD video very popular for a digital movie. DVD
has the capability to produce near studio quality video and better than CD
quality audio. DVD video is usually encoded from digital studio master tapes to
MPEG-2 format. The resulting video, especially when it is complex or changing
quickly, may sometimes contain visual flaws, depending on the processing quality
and amount of compression. At average video data rates of 3.5 to 5 Mbit/s,
compression artifacts may be occasionally noticeable. Higher data rates can result
in higher quality, with almost no perceptible difference from the master at rates
above 6 Mbit/s. As MPEG compression technology improves, better quality is
being achieved at lower rates.

Major DVD video technology features:

• Over 2 hours of high-quality digital video (a double-sided, dual-layer disc
can hold 8 hours of high-quality video, or 30 hours of VHS quality video).

• Support for wide-screen movies on standard or wide-screen TVs (4:3 and
16:9 aspect ratios).
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• Up to 8 tracks of digital audio (for multiple languages, DVS, etc.), each
with as many as 8 channels.

• Up to 32 subtitle/karaoke tracks.

• Automatic ”seamless” branching of video (for multiple story lines or ratings
on one disc).

• Up to 9 camera angles (different viewpoints on a scene can be selected
during playback).

• It has built-in copy protection and regional lockout. It covers encryption,
watermarking, protection of analog and digital outputs, and so on. There
are many forms of content protection that apply to DVD.

Advantages: Wide popularity thanks to many application of this format in
digital communication industry (video phones, DVD, digital TV, etc.).
Disadvantages: Lossy compression.

2.2.4 The MJPEG Format

The abbreviation MJPEG stands for ”Motion JPEG”. This format is practically
an intermediate step between a still image and video format, as an MJPEG clip
is a sequence of JPEG images. This is one reason why the format is often imple-
mented by video editing cards and systems. MJPEG is a compression method
that is applied to every image. Implementation of this format reduce the result-
ing data stream of a standard television signal from approximately 30 MB/s to
6 MB/s (MJPEG file). This corresponds to a compression ratio of 5:1. However,
a standard for the synchronisation of audio and video data during recording has
not been implemented in the MJPEG format so that the manufacturers of video
editing cards have had to create their own implementations.
Advantages: Higher quality in comparison with MPEG, because all frames are
original (not interpolated or bidirectional).
Disadvantages: Lossy compression. Much lower compression rate than MPEG.
It is not very used worldwide.

2.2.5 The H.261 and H.263 Protocol

The H.261 standard is designed for video-conferences and video telephony via
an ISDN network. H.261 enables the image quality to be adapted to the band-
width of the transmission line. In addition, entire images from a sequence can
be omitted during playback in order to improve image quality. Transmission
can occur at a bit rate of 64 Kbit/s or 128 Kbit/s (grouping of two ISDN chan-
nels). The successor standard H.263 implements a higher precision for motion
compensation in comparison to H.261. Also, other image formats (MPEG-4) are
supported in order to accommodate for different application fields such as gate
monitoring systems and wide screen video-conferences.
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Advantages: The format was developed for special application (video-conferences,
etc.) and in this field is widely extended.
Disadvantages: Data flow in this format is constrained by ISDN bit rate (max.
128 Kbit/s).

2.2.6 Another movie formats

There are also another movie formats which are not so widely used. It can be
caused that they are for special purpose or they are easily out of date.

anm (DeluxePaint Animation file) by Deluxe Paint. File extensions: anm

fli (Flick movie file) by Autodesk Animator Pro. File extensions: fli, flc

flp (Wavefront Flipbook file) by Wavefront Technologies. File extensions: flp

gif (CompuServe Graphics Interchange Format file). It supports single and mul-
tiple images, GIF89a animation extensions. File extension: gif

grasp (GRAphical System for Presentation movie file) by IBM. File extension:
gl

iris (SGI IRIS Movie Format file). File extension: mov

pfx (Amiga PageFlipper Plus F/X file). File extension: pfx
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Chapter 3

Motion Estimation

Good scratch restoration algorithm would take advantage of both spatial and
temporal information. Due to motion of objects in scene (i.e. corresponding
regions in an image sequence) the same region don’t occurs in the same place
in previous frame as in current one. Hence for proper function of the proposed
scratch removal algorithm, is favourable to estimate future motion in observed
image sequence as accurate as possible. The motion typically encountered in
an image sequence have three possible forms: translation, rotation and zoom of
objects in the scene. The motion in image sequence can be modelled by equation

Y (r1, r2, r4) = Y ((r1, r2, r4 − 1) − dr1,r2,r4) (3.1)

where Y (r1, r2, r4) is intensity of pixel with a spatial coordinates r1, r2 in the r4-
th frame. Parameter dr1,r2,r4 represents displacement (estimated motion vector)
of this pixel between frames r4, r4 − 1 from the image sequence.

2  1

4

frame n

frame n−1

frame n−2

r = t

r r

Figure 3.1: Motion trajectory of region moving in image sequence.

Regions in image are moving along their motion trajectories (see Fig.3.1)
through the image sequence. So it is necessary to find similar areas in neighbour-
ing frames and to treat them together. Solution is to find motion of the regions in
each frame and then restore missing information in some frame by filtering along
motion trajectories. The motion estimation (ME) is essential tool for determin-
ing of motion trajectories. It gives us motion vector of each pixel or block of
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pixels. Unfortunately no ideal motion estimation has been found yet. The more
accurate is the motion estimation, the better image sequence restoration we can
reach.

We can discriminate motion in a sequence into a two kinds. The first one is
local motion - it means the movement of a object on the scene owing to theirs
background. The second one is global motion - it represents movement of whole
view on the scene. As a matter of fact, the majority of developed motion es-
timation methods make no distinction between global and local motion. There
were already a lot of the motion estimators published and we can divide them,
according to their principle, into a several basic groups. The estimation meth-
ods based on block correspondence matching Block Matching methods (BM) or
computing of a gradient in image Gradient Based methods (GB) are mostly used.
There are also other ME methods based on Markov random fields (MRF) or on
spatio-temporal wavelet transformation.

For fast motion estimation the multi-resolution pyramid (Fig.3.2) is appro-
priate to apply. It is based on under-sampling of processed frames from image
sequence to obtain smaller duplicates. The number of under-sampling steps cor-
responds with number of layers in pyramid. At the beginning is necessary to
initialise motion vector on the coarsest level of the pyramid (top). After this we
apply ME method on less and less under-sampled frames till we reach original
frame resolution. This stops iteration process and final motion vector is obtained.

n     m

2     2
n    m

n    m
4     4

0

1

2

Frame sizelevel
initial vectors [0,0]

Final estimation

Figure 3.2: Multi-resolution pyramid principle.

The ME methods described in this chapter works only with monospectral
movies. Thus to obtain motion vector for multispectral ones it is necessary to
apply these methods for each spectral band separately.

3.1 Block Matching methods

Block matching (BM) is very popular and robust type of methods for motion
estimation, which are widely adopted in various coding standards, such as H.261,
H.263, MPEG-1, MPEG-2, MPEG-4. It is used for fast motion estimation of
the blocks, into which is usually evaluated image divided. Principle of these
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Figure 3.3: Principle of Block Matching methods.

methods [17] is depicted in Fig.3.3. For block in actual frame (frame n) are
computed Mean Squared Error (MSE) or Mean Absolute Difference (MAD) of
pixels, between this block and all candidates block in previous frame (frame n−1).
The amount of the candidates is arbitrary and specifies the search area. As a final
motion vector is chosen the candidate which gives the lowest MSE or MAD value.
The more candidates is chosen, the more computational demanding the motion
estimation process will be. If we use block of size N × N and size of candidate
space (N + 2s) × (N + 2s) (Fig.3.3), we have to perform N 2(2s + 1)2 operation
for Motion Estimation of one block. Thus many approaches were performed to
reduce this computational requirements. Some work and improvements in this
field was made in [6, 5]. In [31] the neighbouring blocks are overlapped and
interact with one another to achieve higher performance of the method.

Interesting approach using iteration principle was created by Zhu S. and Ma
K. [37] called Diamond search (DS). The shape of the search pattern is depicted
in Fig.3.4-a. Evaluated pixel is placed in the center of this pattern. They are
reducing computation in this pattern only into direction in which is the computed
MAD value the lowest. The MAD is computed in mentioned Search Pattern
between evaluated pixel in actual frame and pixel lying in distance defined by
attained motion vector in previous frame. When the new direction is chosen (by

a) b)

Figure 3.4: The “DS” algorithm: (a)large neighbourhood (b)small neighbourhood.

the lowest MAD), the center of the Search Pattern is moved to this direction
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and computation continues again. This is made iteratively till no direction is
chosen (no movement of the shape from the central point). After this the smaller
neighbourhood (Fig.3.4-b) is used to compute a final value of motion vector. The
example of iterative obtaining a motion vector is shown in Fig.3.5.

y0

y

3.

4.

2.

5.  6.

7.step 1.

x0 x

final displacement is  d(x−x0, y−y0)

Figure 3.5: An example on principle of “DS” algorithm.

We found this algorithm fast and easy to implement, so we used it for motion
estimation in image sequence for proposed restoration method in Chapter 5.
Results of the tests of implemented algorithm are in Figs.3.8-e,f , 3.9-e,f.

3.2 Gradient Based methods

These methods were developed independently by workers in Video Coding and
Computer Vision in seventies. They tried to find a motion estimator which
requires less computation than BM [17].

The Gradient Based methods (GB) iteratively computing update vector of
motion vector d

ur4 = d − dr4 (3.2)

where dr4 is current estimate of d. The goal is to minimise the size of update
vector and Mean Square Error expressed by

E[(ur4 − ûr4)
T (ur4 − ûr4)] . (3.3)

To have direct access to the motion parameter d we have to rearrange the
equation (3.1). This equation can be linearised using a Taylor series expansion

Yr4(r1, r2) = Yr4−1(r1, r2) + dT∇Yr4−1(r1, r2) + er4−1(r1, r2) (3.4)

where er4−1(r1, r2) represents the higher order terms of the Taylor expansion
and ∇ is multidimensional gradient operator. After rearranging we obtained
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expression involving the Displaced Frame Difference with zero displacement d

and substitution of displacement d by its update ur4 .

DFD((r1, r2), 0) = Yr4(r1, r2) − Yr4−1(r1, r2) = uT
r4
∇Yr4−1(r1, r2) + er4−1(r1, r2)

(3.5)
This we can express by equation

zr4 = Gur4 + e . (3.6)

Let have size of movie frame N×N . zr4 is vector containing DFD((r1, r2),dr4)
for each pixel ((r1, r2) = 1...N 2) and G is matrix of gradients in both directions
(r1, r2) for each pixel. The guess of update vector is then

ûr4 = [GT G + µI]−1GT z (3.7)

where µ is something like damper in system preventing the inverse [GT G+µI]−1

from being unstable when the matrix GT G is ill conditioned.
After obtaining update vector ur4 , new motion vector is computed

dr4+1 = dr4 + ur4 .

Update ur4 is then computed iteratively till the convergence is reached (ur4 is
smaller then some threshold). Because the displacement vector d after estimation
can contain fractional number some interpolation into pixel grid is necessary.

There is a lot of modification of this method, which are described in [17]. The
fast GB method based on coarse initial estimation and the hierarchical imple-
mentation is proposed in [8].

3.3 Block Matching vs. Gradient Based motion esti-

mators

The Block Matching methods are more computational demanding than the Gradi-
ent Based ones, but they are still very popular because of simple implementation
and ability to handle with any displacement size (it depends only on the chosen
search area). Gradient Based techniques can’t handle large motion, because for
the large displacements, there is no relation between two regions being compared
in two frames. Hence the Taylor serial expansion of the region in the previous
frame won’t have connection with the current region.

Another drawback of Gradient Based methods is possibility of ill-conditioning
of the computation when regions in the frame have insignificant texture.

The advantage of the Gradient Based methods is variable resolution of the
motion vector. With using of multi-resolution pyramid we can obtain variable
resolution also with Block Matching techniques. But Block Matching techniques
gives us only integer accurate motion estimation. For fractional accuracy we need
extract blocks between location on the image grid and perform some interpola-
tion.
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3.4 Other Motion Estimation Methods

There are also other ME methods. As an example can be mentioned methods
based on Markov Random Fields (MRF) [36]. These methods have the best
results, but their applying for online processing is more difficult due to their huge
computational complexity.

Other new methods estimate motion in wavelet domain [24, 26]. They are
based on the spatio-temporal continuous wavelet transformation. The wavelet
transformation decomposes a non-stationary signal into a set of multiresolutional
wavelet coefficients where each component becomes relative more stationary and
easier to describe.

The approach for ME in colour image sequences based on Maximum-Likelihood
formula using chrominance information is introduced in [21, 22].

The motion field interpolation method for minimising the effect of transmis-
sion error during broadcasting is in [23].

3.5 Test Data Description

Testing of the proposed ME and scratch restoration algorithms requires appro-
priate image sequences. First of all we searched for some standard test sequence
with some defined corruption. Unfortunately we didn’t succeeded in it, because
each researcher use different one. Finally we used two following sequences for
testing.

a) b)

c) d)

Figure 3.6: Selected frames from the “tennis” sequence: (a)frame No.77 (b)frame No.78
(c)frame No.0 (d)frame No.1.

• “tennis” is standard test sequence obtainable from public domain WWW
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page [25]. It introduces players during their table tennis play and includes
various motion characteristics such as camera panning, zooming, and mo-
tion of human body. The examples of frames from “tennis” sequence used
for testing are presented in Fig.3.6. This sequence includes several seams
with different view on the scene. We selected from this sequence two parts.
First with player hitting a ball (Fig.3.6-a,b) and second which contains
detail of racket in player’s hand with ball moving in the air (Fig.3.6-c,d).

• “cars” is the second sequence we used. We needed to test proposed algorithm
also on sequence including fast motion. Fast means, in this thesis, more than
10 pixel between successive frames. We didn’t found an appropriate colour
sequence so we created it ourself. The requirement on motion was that
it should be easy to estimate manually, to verify results of ME algorithm.
For this purpose the pure translation of the object was satisfactory. Hence
we took several pictures of moving car-toys by digital camera. The two
obtained frames are shown in Fig.3.7.

e) f)

Figure 3.7: Selected frames from the “cars” sequence: (a)frame No.76 (b)frame No.77.

3.6 Tested Motion Estimation Methods Results

For aim of comparison the two ME methods are implemented. The classical
simple BM ME method Fig.3.3 [17] (further referred as BM1) and its iterative
improvement “Diamond search” Figs.3.4,3.5 [37] (further referred as BM2). Both
methods are tested on an image sequences “tennis” and “cars”. The original
frames No.0 and No.1 from “tennis” sequence are shown in Fig.3.8-a,b and motion
vectors in horizontal and vertical direction estimated by method BM1 are in
Fig.3.8-c,d and by method BM2 in Fig.3.8-e,f. In this test the results of both
method are satisfactory. Method BM2 is even able to detect slow (less than 5
pixels/frame) global motion (zooming) in the image sequence. This is observable
in Fig.3.8-e,f in region where the tennis table appears.

The “cars” sequence involve fast motion (about 18 pixels/frame), hence it
is more difficult to estimate it by BM1. The BM1’s performance here depends
mainly on the size of area of all matching candidates blocks. So if we increase
this size, the method complexity increase quadratically. On the other hand the
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a) b)

Method BM1:
horizontal motion vertical motion

c) d)

Method BM2:
horizontal motion vertical motion

e) f)

Figure 3.8: Motion estimation between frames (a)No.0 (b)No.1 from “tennis” sequence
by method BM1 (c)(d) and by method BM2 (e)(f) in horizontal (c)(e) and vertical (d)(f)
direction respectively.
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iterative method BM2 can be often trapped into local maximum solution during
computation of an optimal motion vector.

The tested frames No.76 and No.77 from “cars” sequence are in Fig.3.9-a,b.
The corresponding motion vectors in horizontal and vertical direction estimated
by method BM1 are in Fig.3.9-c,d and by method BM2 are in Fig.3.9-e,f. The
both methods suffer here by false estimation in regions where no motion appears,
while method BM1 gives visually better results. We have to remark, that il-

a) b)

Method BM1:
horizontal motion vertical motion

c) d)

Method BM2:
horizontal motion vertical motion

e) f)

Figure 3.9: Motion estimation between frames (a)No.76 (b)No.77 from “cars” sequence
by method BM1 (c)(d) and by method BM2 (e)(f) in horizontal (c)(e) and vertical (d)(f)
direction respectively.

lustrated ME results represents motion vectors averaged in all spectral bands.
Obtained results denounce that tested methods aren’t ideal, but they give us at
least an estimate of motion tendency of observed region in the image sequence.

22



3.7 Employing of Motion Compensation for Scratch

Restoration
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Figure 3.10: Principle of motion vectors interpolation in the scratch area.

Above mentioned ME methods assume known data from two processed frames
in image sequence. However this condition in not fulfilled in the frame where the
scratch occurs. During the scratch restoration the motion vectors mostly from the
pixels placed in the scratch area are needed. Thus some method propagating the
known motion vectors from the scratch surrounding into the scratch area is es-
sential. Efficient technique for motion interpolation based on Gibbs Energy prior
in Markov Random Fields was introduced in work of Kokaram [18, 19]. In this
thesis is this problem solved by simple linear interpolation of the motion vectors
from the scratch surrounding (Fig.3.10). This surrounding is obtained by mor-
phological dilatation of the original scratch mask. The obtained results are used
as displacement motion vectors for restoration method proposed in Chapter 5.
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Chapter 4

The Scratch Restoration

Methods Overview

4.1 Scratch Detection Methods

The basic assumption for the successful scratch restoration, is knowledge about
location of corrupted area with missing pixels in the processed frames from the
image sequence. There are several scratch detection methods with different com-
plexity [18].

In this thesis we mention the simplest method for the corrupted area detection
is SDI detector (Spike Detection Index) [18]. The method assumes that dirt and
sparkle represents regions of temporal discontinuity in intensity along motion
trajectories (Fig.3.1). It have several adaptations. The simplest detector SDIa is
proposed by equations (4.1), (4.2). When the observed pixel is corrupted the E−

and E+ takes a high magnitude.

E+ = Y (r1, r2, r4) − Y ((r1, r2, r4 − 1) + dr1,r2,r4)

E− = Y (r1, r2, r4) − Y ((r1, r2, r4 − 1) + dr1,r2,r4) (4.1)

Unfortunately this occurs also when motion discontinuities (occlusion and un-
covering) occur. This drawback can be overcome if the detector will be able to
recognise if temporal discontinuity occurs only in one direction along the motion
trajectory or not. The SDI detector flags missing data if both E− and E+ have
higher values then user defined threshold value and is 0 otherwise.

bSDIa(r1, r2) =

{

1 for (|E+| > α) ∧ (|E−| > α)
0 otherwise

(4.2)

where α is user defined threshold.
Improvement of the method, called SDIb, is in equation (4.3). It constraints

the ability of missing data detection but the results are then more reliable.

bSDIb(r1, r2) =











1 for (|E+| > α) ∧ (|E−| > α)
∧(sign(E+) = sign(E−))

0 otherwise
(4.3)
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From the text above it is clear that efficiency of the scratch detectors rely on
good ME method estimating displacement vector dr1,r2,r4 . Other missing data
detectors are described in [18].

4.2 Classical Restoration Methods

For the scratch restoration the below mentioned basic restoration methods are
commonly used. These methods are mostly very simple, but can help us as a basic
quality measure for comparison with the next proposed restoration method. In
this thesis we called these methods as “classical”. In our case the mentioned
classical methods works only with the static images, so they don’t’ use temporal
information in the image sequence. That’s why for image sequences it is necessary
to apply these methods on every frame separately. Also all spectral layers in frame
are processed separately.

4.2.1 Averaging

Averaging is the simplest method which replaces missing pixel value by mean
value computed from known pixels of local support set. The shape and size of
the support set is arbitrary and we tried simply square one. The best results on
our test data corrupted by a scratch (Fig.6.1-b) are obtained with it’s size 5× 5.
The unknown pixels on a scratch are computed consecutively rightward row-wise
and moved with this support set through the scratch in order to obtain most
of known data in support set. This approach cause linear dependency, which
is sometimes observable in restored image like straight bright or dark artifact,
mostly if corrupted area is too wide.

4.2.2 Filtering by median

Median is a robust statistic. The method finds in random population outliers,
eliminates them and substitute the remaining values by their typical value. It
takes reconstructed pixel surroundings in appropriate support area (we used sim-
ply square). Then all pixels are sorted according to their intensity from the
biggest one to the smallest one. Optimal value is then in the middle of the sorted
array. We tested this method, on our test data corrupted by a scratch (Fig.6.1-b),
for several sizes of square support set and the best results gives size 7 × 7.

4.2.3 Linear and Quadratic regression

In these methods the pixels on scratch are interpolated by using of parameters
computed from known pixels around the scratch on every line where the scratch
occurs. Amount of known pixels which are taken into an account from every side
of scratch is arbitrary and represents surrounding which is used for parameters
computing. Then this parameters are used to obtain appropriate interpolation by
outline and parabola. The equations for a pattern and a coefficients computation
are (4.4),(4.5).
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yLR = b0 + b1x yQR = b0 + b1x + b2x
2 (4.4)

The solution is based on least squares estimate, which is explained in [27].
It is also possible to interpolate missing data by higher order curves. Universal
equation for model parameters computing is
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


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

(4.5)

where xi is position of known value Yi.

4.3 Advanced Restoration Methods

In this section we discuss recent solutions of scratch restoration in image se-
quences. Unfortunately we can’t compare our results also with these methods,
because their authors rarely mention any test criteria and compared their results
usually only in terms of the subjective visual quality. Surprisingly the number
of published algorithms in the area of movie restoration is rather small prob-
ably because of computational complexity of most restoration approaches. A
considerable amount of these methods is concerned in a noise and blur filtering.
Recent overview of the image sequence restoration methods was introduced in
work of Kokaram [17]. The several methods for the suppressing local distortion
in image sequence were introduced. Other model-based methods use most often
Markov random fields type of models either in the form of wide-sense Markov
(AR models) or strong Markov models.

A short overview of recent developed scratch restoration methods follows.

4.3.1 Spatio-Temporal Median Filtering

Proposed filters depicted in Fig.4.1 use data from three frames to achieve filtering.
The center window in each window-set refers to a window in the current frame.
An example of the filter is described by equation (4.1).

W 2W 1C

Figure 4.1: Example of sub-filter masks for median filter introduced in [1].
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zl = median[Wl], 1 ≤ l ≤ 2, (4.6)

Filter output = median[z1, z2, C]

There are many possible improvements by filters shapes and their amount
[1, 2]. The method is assumed for dirt and sparkle removing and is not suitable
for large scratch removal thanks to linear dependence on previously restored
pixels.

4.3.2 Non-causal 3D AR Modelling

The proposed non-causal 3D AR model handle with mono-spectral image se-
quence. Model compute prediction of a pixel as a weighted linear combination of
pixels in predefined contextual neighbourhood. The model is defined as follows:

Y (r1, r2, r4) =
∑

s1,s2,s4∈Ir1,r2,r3

as1,s2,s4Y (r1 + s1 + d1;r4,r4+s4 , r2 + s2 + d2,r4,r4+s4 ,

r4 + s4) + ε(r1, r1, r4) (4.7)

Where: Y (r1, r2, r4) is intensity of the pixel at the position (r1, r2, r4) where
(r1, r2) is horizontal and vertical position in frame r4.

as1,s2,s4 are model coefficients.
[s1, s2, s4] is the vector offset in the k-th predefined non-causal contextual

neighbourhood Ir1,r2,r4 .
dr1,r2,r4 = [d1;r4,r4+s4 , d2;r4,r4+s4 ] is the motion vector between frames r4

and r4 + s4.
ε(r1, r2, r4) is the error representing difference between model prediction

and actual pixel intensity.
Motion displacement is estimated by modification of the GB ME method

introduced in section 3.2 on page 17.
The coefficients of AR model are estimated by minimising of the square error

ε and it leads to a Normal equations. For coefficients computation the correlation
function of the image sequence is necessary.

An improvement of 3D AR model employing a hierarchical GB ME, robust in
regions of corrupted data with Markov random field motion prior, was published
in [19].

4.3.3 Controlled Pasting Scheme for Missing Data Interpolation

This solution employing 2D AR model and Markov random field techniques,
based on controlled pasting scheme is proposed in [34]. The pixel intensity from
the reference image frame that gives the smallest AR prediction error is pasted
into the current frame.
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4.3.4 Bayesian Approach with Vector Median Colour Image Model

Another approach for scratch restoration in colour image sequences was intro-
duced by Armstrong [3]. It is based on n-dimensional vector median image model.
Where n represents amount of spectral bands in image. This is combined with a
strategy that first detect scratches by simple SDI detector and then the scratch
area is restored using motion-compensated model-based Markov Chain Monte
Carlo sampling techniques.

The vector median of a set of n-dimensional vectors X = xq : q = 1, · · · , N is
defined in

xmed = arg min
xj∈X

∑

q

|xq − xj| . (4.8)

The Gibbs sampler is used to iterative samples drawing for the missing data
and the noise process for each channel is modelled with a zero-mean Laplacian
distribution. Motion compensation is performed by multidimensional implemen-
tation of GB ME method.

4.3.5 The JOMBADI Algorithm

The last and the most complex method for missing data restoration based on
non-causal 3D AR modelling is described in [18]. Algorithm name stands for
“JOint Model BAsed Detection and Interpolation”. The algorithm includes GB
ME method and Bayesian framework for joint detection (by SDI detector) and
restoration of the missing data. Solution is based on Gibbs sampler and it’s
adaptations.

Algorithm was applied during developing of automatic digital restoration sys-
tem AURORA [28].

4.3.6 Causal Autoregressive Models

The majority of mentioned scratch restoration algorithms have the main problem
in time consuming iterative solution and have to solve also iteration stopping
problem. This drawbacks are eliminated by the method described in [14, 15].
The method for scratch restoration in monospectral image sequences is based on
causal 2.5D autoregressive model which has analytic solution instead of iterative
one. The method was further improved in [16] to select a locally optimal predictor
from two mutually competing symmetrical adaptive predictors for each pixel to
be reconstructed. We extended this model into 3D and 3.5D one in [12].
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Chapter 5

The Scratch Restoration by the

Causal Autoregressive Model

Modelling of colour image sequence requires in general four dimensional data
model where data are spectrally, spatially and temporally correlated.

Unfortunately the 4D model has huge amount of parameters to estimate and
has to represented by a tensor. Therefor the 4D model has huge computational
demands, requires a huge training data set, leads to non-linear parameter es-
timation, hence it has to solve problem when to stop iterative process. Due
to constrained numerical precision it is possible that the model is numerically
unstable.

Due to these reasons the 4D model does not have analytic solution and some
simplifying steps are necessary. The number of dimensions can be reduced if we
are able to factorise input data space and finally more less-dimensional models are
used. This is possible if data in each dimension aren’t mutually correlated. This
condition is never fulfilled but we can perform data space decorrelation by some
statistical method as for example Karhun-en-Loeve transformation, etc. Another
approach of 4D model simplifying is employing of the next proposed 3.5D model.

5.1 Image 3.5D Causal Autoregressive Model

Suppose Y represents a digitised colour movie defined on a finite rectangular four
dimensional N ×M ×d×τ underlying lattice I, where N ×M is the frame size,
d is the number of spectral bands (i.e., d = 3 for usual colour movies) and τ is
the overall number of frames in the film to be reconstructed. Corresponding pixel
multiindex r = {r1, r2, r3, r4} has the row, columns, spectral and time indices,
respectively.

All image data are assumed to be known except a set (S) of unobservable
multispectral pixels from some frame belonging to a scratch. The missing scratch
data reconstruction from the topologically nearest known data in the lattice I

using temporal and spatial correlation in the neighbourhood generally requires a
4D model. Unfortunately parameters of such a AR model cannot be estimated
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analytically.

However if we neglect mutual temporal correlations, i.e.,

E{er1,r2,r3,•e
T
s1,s2,s3,•} = diag[σ2

r3
, . . . , σ2

r3
] ∀s : s1 = r1, s2 = r2, s3 = r3

but nevertheless use different temporal multispectral pixels in a 3D AR model we
obtain the 3.5D AR model which can be solved analytically under some additional
acceptable assumptions. The notation • has the meaning of all possible values of
the corresponding index. Suppose further that the multispectral multitemporal
movie data can be represented by an adaptive causal 3.5 dimensional simultaneous
autoregressive model:

Yr1,r2,•,r4 =
∑

{s1,s2,s4}∈Ir1,r2,r4

As1,s2,s4Yr1−s1,r2−s2,•,r4−s4 + er1,r2,•,r4 ∀r ∈ I

= γ Xr1,r2,•,r4 + er1,r2,•,r4 , (5.1)

where Yr1,r2,•,r4 is a multispectral d×1 vector corresponding to a single multispec-
tral pixel in the r4-th frame. Ir1,r2,r4 is a causal index shift set including index
shifts s1, s2, s4. Ir1,r2,r4 specifies shape of the contextual neighbourhood (CN)
around the actual index r1, r2, r4. Causality is fulfilled when all data obtained
from CN are known (not missing pixels). The example of causal and non-causal
CN is depicted in Fig.5.1.

movement
direction

CN

a)

support pixel

predicted pixel

missing pixel

known pixelb)

Figure 5.1: The example of two causal (a) and two non-causal (b) contextual neigh-
bourhoods.

From this causal contextual neighbourhood the known data are arranged into
a vector:

Xr1,r2,•,r4 = [Y T
r1−s1,r2−s2,•,r4−s4

: ∀{s1, s2, s4} ∈ Ir1,r2,r4 ]
T . (5.2)

The expression
γ = [A1, . . . , Aη] , (5.3)

is a d × dη parameter matrix with

Ai =









ai
1,1 . . . ai

1,d
...

. . .
...

ai
d,1 . . . ai

d,d









∀i ∈ {1 . . . η} , (5.4)
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where
η = card{Ir1,r2,r4} .

If all matrices Ai are diagonal (i.e. Ai = diag[ai
1,1, . . . , a

i
d,d]) then the 3.5D

model reconstruction is identical with separately applied 2.5D model reconstruc-
tion on every monospectral scratch pixel component.

Data ordering in Xr1,r2,•,r4 (5.2) corresponds to the arrangement of parame-
ters in (5.3). The noise vectors er1,r2,•,r4 are assumed to be mutually uncorrelated
zero mean white Gaussian, i.e.,

E{er1,r2,•,r4e
T
s1,s2,•,s4

} =

{

0 if r 6= s

Σ otherwise
,

where Σ is the noise covariance d × d matrix which is assumed to be constant
but unknown to us.

The missing scratch data will be reconstructed from the topologically nearest
known data in the lattice I using temporal and spatial correlation in the neigh-
bourhood. Scratch pixels are replaced by the one-step-ahead predictive ones using
the conditional mean predictor

E
{

Yr1,r2,•,r4 |Y
(r−1)

}

, (5.5)

where Y (r−1) is the known process history

Y (r−1) = {Yr−1, Yr−2, . . . , Y1, Xr, Xr−1, . . . , X1}

= {Yr−1, Yr−2, . . . , Y1} . (5.6)

Simplified notation r, r − 1, . . . denotes the multispectral process posi-
tion in I, i.e., r = {r1, r2, •, r4}, r − 1 is the location immediately preceding
{r1, r2, •, r4}, etc. A direction of movement on the underlying image sub-lattice
corresponding to a corrupted frame is chosen in a way to erode the frame scratch,
i.e., r − 1 = (r1 −41, r2 −42, •, r4), r − 2 = (r1 − 241, r2 − 242, •, r4), . . ..

The estimator of unknown model parameter matrix γ (5.3) is

γ̂T
r−1 = V −1

xx(r−1)Vxy(r−1) . (5.7)

The following notation is used in (5.7):

Ṽvw(r−1) =
r−1
∑

k=1

VkW
T
k (5.8)

and
Vvw(r−1) = Ṽvw(r−1) + Vvw(0) ,

where Vk,Wk are either Xk or Yk .
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The number of model movements on image plane is

β(r) = β(0) + r − 1 = β(r − 1) + 1 , (5.9)

where
β(0) > η − 2 (5.10)

and
λ(r) = Vyy(r) − V T

xy(r)V
−1
xx(r)Vxy(r) . (5.11)

See [14] for more details.
The model adaptation is introduced using the standard exponential forgetting

factor technique in parameter learning part of the algorithm [11]. The exponen-
tial forgetting factor is stated by parameter ρ and afterwards the equation (5.8)
becomes

Ṽvw(r−1) = ρ
r−2
∑

k=1

VkW
T
k + Vr−1W

T
r−1 . (5.12)

The estimate of process-history-data covariance matrix is [14]

Σr−1 =
λ(r−1)

β(r)
. (5.13)

Marginal density p(γr|Y
(r−1)) can be evaluated from

p(γr|Y
(r−1)) =

∫

p(γr,Σ
−1
r |Y (r−1))dΣ−1

r . (5.14)

The marginal density p(γr|Y
(r−1)) can be expressed analytically in matrix

t distribution density

p(γr|Y
(r−1)) =

∏d
i=1 Γ(β(r)+d+2−i

2 )
∏d

i=1 Γ(β(r)+dη+d+2−i
2 )

π− d2η
2 |λ(r−1)|

− dη
2 |Vxx(r−1)|

d
2

|I + λ−1
(r−1)(γr − γ̂r−1)Vxx(r−1)(γr − γ̂r−1)

T |−
β(r)+d+1

2 (5.15)

with conditional mean value, which represents previous predictor parameter
matrix

E
{

γr|Y
(r−1)

}

= γ̂r−1 (5.16)

and covariance matrix

E
{

(γ−1 − E{γr|Y
(r−1)})T (γr − E{γr|Y

(r−1)})|Y (r−1)
}

=
V −1

xx(r−1)λ(r−1)

β(r) − dη
.

(5.17)
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If we assume the normal-Wishart (or alternatively Jeffreys) parameter prior
then it was proved in [13] that the one-step-ahead predictive posterior density to
have the form of d-dimensional Student’s probability density

p(Yr |Y
(r−1)) =

Γ(β(r)−dη+d+2
2 )

Γ(β(r)−dη+2
2 ) π

d
2 (1 + XT

r V −1
xx(r−1)Xr)

d
2 |λ(r−1)|

1
2



1 +
(Yr − γ̂r−1Xr)

T λ−1
(r−1)(Yr − γ̂r−1Xr)

1 + XT
r V −1

xx(r−1)Xr





−
β(r)−dη+d+2

2

, (5.18)

with β(r)− dη +2 degrees of freedom, if β(r) > dη then the conditional mean
value is

Ỹr1,r2,•,r4 = E
{

Yr1,r2,•,r4 |Y
(r−1)

}

= γ̂r−1Xr1,r2,•,r4 . (5.19)

This equation is used for computation of new predicted value on indices
r1, r2, •, r4 dependently on known process history Y (r−1).

The corresponding covariance matrix is

E
{

(Yr − E{Yr|Y
(r−1)})T (Yr − E{Yr|Y

(r−1)})|Y (r−1)
}

=
1 + XrV

−1
x(r−1)X

T
r

β(r) − dη
λ(r−1) .

(5.20)

5.1.1 Optimal Model Selection

Let us assume a set of AR models (5.1) M1,M2, . . . which can differ either in the
contextual neighbourhood Ir1,r2,r4 or / and in their exponential forgetting factor
ρ. The optimal decision rule for minimising the average probability of decision
error chooses the maximum a posterior probability model, i.e., a model whose
conditional probability given the past data is the highest one. The presented
algorithm can be therefore completed [16] as:

Ỹ i
r = γ̃

i,T
r−1Xi,r if p(Mi|Y

(r−1)) > p(Mj |Y
(r−1)) ∀j 6= i (5.21)

where Xi,r are data vectors corresponding to I i
r1,r2,r4

. Following the Bayesian
framework used in our paper, choosing uniform a priori model in the absence of
contrary information, p(Mi|Y

(t−1)) ∼ p(Y (t−1)|Mi), and assuming conditional
pixel independence, the analytical solution has the form [16]

p(Mj |Y
(r−1)) = k exp{Dj} ,

where

Dj = −
d

2
ln |Vx(r−1)| −

β(r) − dη + d + 1

2
ln |λ(r−1)| +

d2η

2
lnπ (5.22)

d
∑

i=1

[

ln Γ(
β(r) − dη + d + 2 − i

2
) − ln Γ(

β(0) − dη + d + 2 − i

2
)

]
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and k is a common constant. All statistics related to a model Mj Ṽxy(r−1),

Ṽxx(r−1), are computed from data in Xj,r. The determinant |Vxx(r)| as well as
λr can be evaluated recursively see [14].

5.2 The Scratch Restoration Algorithm

The task consists in question how to apply the proposed 3.5D CAR model for
corrupted area restoration. The basic idea of the approach is a scratch pixel
replacement with it’s corresponding 3.5D CAR model prediction. The model,
specified by contextual neighbourhood I c

r1,r2,•,r4 is moving towards the scratch
and adaptively updating its parameters during this process. After reaching a
corrupted pixel its prediction is computed from accumulated data as well as
actual data in the neighbourhood of the corrupted pixel. The length of model
history σ in pixels corresponds to the number of updates before applying the
prediction. The parameter σ is important for restoration and it’s value affects
obtained results as can be seen in the Fig.6.11.

scratch restored
from the left side

scratch restored
from the right side

spatial interleaving
from both sides

AveragingAveraging

Scratch with
missing data

restored frame

frame  nframe  n

frame  n−1

σσ

Figure 5.2: The restoration method scheme for vertical scratch.

The restoration algorithm is depicted in Fig.5.2. Let’s assume the rightwards
movement of the model. When the model reaches the scratch, the corrupted
pixel prediction is evaluated. This is performed for each line in the scratch from
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top and bottom edge using symmetrical downwards and upwards moving models
and their results are averaged. This helps as to overcome artificial restriction on
contextual neighbourhood which have to be causal. The action is performed till
there aren’t unrepaired pixels in the scratch. In this moment we get the scratch
pixel repaired by the data predictions from its left side. Similarly the restoration
is done also by the data predictions from the right side. Now it’s necessary to
link together two possible predictions for each unknown pixel. Simple averaging
isn’t appropriate, because we need to consider distance of the predicted data from
the last known original data. Hence linear interleaving was used to weight the
influence of data from both sides of the scratch dependently on the horizontal
placement of the predicted pixel on a line of the scratch. Even better results were
obtained if exponential interleaving instead linear one was used. This solution
gives bigger weight to predictions which are closer to their last known uncorrupted
data than linear interleaving variant.

The motion restoration algorithm was implemented in C++ on HP-UNIX
operation system. To fulfil the method’s requirements the libraries for motion
estimation and linear and quadratic regression were developed.
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Chapter 6

Results and Discussion

In this section we present results of proposed restoration method and compare
them with classical method mentioned in section 4.2 on page 25.

6.1 Test Criteria

For our simulation, the selected frame in image sequence, is corrupted by known
“artificial” scratch generated by arbitrary mask image. Thus we know data val-
ues in scratch area for comparison with restoration results. To prevent subjec-
tive visual comparison of results by different methods, some numerical metric is
necessary for their evaluating. Quality of the restoration is measured by Mean
Absolute Difference (MAD) between original frame and restored one:

MAD(r3, r4) =
1

νξr3

∑

∀r∈S

|Yr1,r2,r3,r4 − Ỹr1,r2,r3,r4 | (6.1)

ν = card{S} is the number of missing multi-spectral scratch pixels and
ξri

is the number of quantization levels in the i-th spectral band. For all our
experimental movies ξri

= ξ = 255 i = 1, 2, 3. MAD is computed for each
spectral layer separately and thus results can provide also information about
colour properties of the image. For faster comparison of results the MAD averaged
in all spectral layers is computed

MADA(r4) =
1

d

d
∑

r3=1

MAD(r3, r4) . (6.2)

The used image sequences are described in section 3.5 on page 19.

6.2 The Classical Methods Results

We tested all classical methods on frame No.78 from ”tennis” sequence corrupted
by different scratches. Results of tests performed with scratch “tmask2”are in
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Tab.6.1 and Fig.6.1. Generally the best results were obtained by Linear Re-
gression with support surrounding of two pixel from both side of the scratch.
Averaging and Median filtering suffer by blurring of the scratch area. The re-
sults of Linear regression method are blurred in direction of interpolation and
Quadratic restoration method produce discernible columns in the scratch area.

a) b) c) d) e) f)

Figure 6.1: Results of restoration of the scratch “tmask2” (b) in the frame No.78
from “tennis” sequence: (a)original image (b)image corrupted by the vertical scratch
(c)Averaging (d)Median filtering (e)Linear regression (f)Quadratic regression.

Table 6.1: Results of classical scratch restoration methods on frame No.78 in a “tennis”
sequence corrupted by scratch “tmask2” (Fig.6.1-b).

MAD error in method
spectral band Averaging Median Linear Quadratic

filter filter regression regression
Red 0.136 0.129 0.123 0.125
Green 0.155 0.142 0.133 0.140
Blue 0.159 0.142 0.134 0.141
average value 0.150 0.138 0.130 0.136

6.3 The Proposed Method Results

If we don’t use time shift in used contextual neighbourhood (CN) Ir1,r2,•,r4 the
3.5D CAR model becomes only 3-dimensional. Thus missing data are predicted
only from surrounding of the scratch in actual frame. Restoration results of 3D
CAR and 3.5D CAR model are affected by spatial shape of the CN, by exponential
forgetting factor ρ, and by the length of model history σ. As it was mentioned
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in Chapter 5 the CN has to be causal. It means that it can include only known
or predicted data from previous model movements. We tested different shapes of
the 3D causal CN (Fig. A.1 on page 57) on frame from image sequences “tennis”
and “cars”, corrupted by several scratches (Figs.6.5-b, 6.3-b, 6.4-b, 6.6-b, 6.8-b).
The CNs with the best performance for the most of the scratches are marked by
frame-box in Fig. A.1 on page 57.

There are also Bayesian methods available for optimal CN shape selection
described in section 5.1.1 but their performing involve high computational re-
quirements so they aren’t appropriate for online processing. So constant shape
of CN can be compromise between speed of the algorithm and quality of the
restoration results.

To reach better performance of the method, the more information about miss-
ing data surrounding is necessary. This information is easy to obtain from previ-
ous or / and following frame(s) if we know their data values. Neighbouring frames
we can index by appropriate time shift in CN and the model become 3.5D. Deter-
mining of the optimal shape of the CN is here more complicated than in previous
case. Performance of the 3.5D CAR model depends except CN’s shape also on
the number of support pixels in the CN obtained from neighbouring frame(s) in
comparison with the number obtained from the actual frame.

On the one hand the more pixels from previous (uncorrupted) frame we
choose, the better results are reached. On the other hand the cardinality of
CN have influence on computational demand of the whole algorithm so the less
cardinality CN has, the faster whole method will be.

The experimentally found CN shapes with the best results for 3D and 3.5D
CAR models are shown in Fig.6.2.

frame n
frame n-1

predicted
pixel

known 
pixel

a) b)

Figure 6.2: The best shapes of contextual neighbourhood Ir for (a)3D CAR model
(b)3.5D CAR model. Note that each block in index shift contains data from all spectral
layers (RGB).

Unfortunately we can’t simply pick up the data from neighbouring frames,
because of the motion in the image sequence. So the Motion Compensation
(MC) is needed between successive frames. If speed of the object on the scene
in the image sequence is less than about 3-4 pixels between neighbouring frames
employing of the MC isn’t essential and obtained results are satisfactory.

We perform several tests for comparison of the mentioned classical methods
with 3D CAR model. Then also the performance of 3D CAR model in compar-
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ison with 3.5D CAR model is tested. We divide our test into three categories
dependently on the motion velocity of corrupted regions in the image sequence.

During the all tests the forgetting factor ρ is set up to value 0.985 and the
length of model history σ is 20 pixels.

6.3.1 Test 1: Slow Motion Velocity in Image Sequence

In these tests we don’t perform motion compensation between neighbouring
frames. The frames No.77 and No.78 from “tennis” sequence are used.

We tested proposed method on several shapes of the scratches with different
placement in the frame.

tmask1 (Fig.6.3-b) presents vertical scratch with average width about 12 pix-
els. The corrupted area in image sequence is slowly moving body of a tennis
player. The scratch is located in whole image sequence mostly on places where
occlusion and uncovering appears. The best results from all the classical meth-
ods has Median filter in Fig.6.3-c. The results of 3D CAR model are in Fig.6.3-d
while performance of 3.5D CAR model is in Fig.6.3-e. MAD values for mentioned
methods are in Tab.6.2.

a) b) c) d) e)

Figure 6.3: Scratch “tmask1” (b) restoration in frame No.78 from the “tennis” sequence
(a)original frame-cut (b)corruption by the scratch (c)Median Filter (d)3D CAR model
(e)3.5D CAR model.

tmask2 (Fig.6.4-b) is also vertical scratch little curved with average width
about 6 pixels. The surrounding of the scratch in the image sequence is wall
and the table in the room zoomed and panned in time. The best results has
method based on the Linear regression (Fig.6.4-c). The results of 3D CAR model
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Table 6.2: MAD computed for proposed method performed on scratch “tmask1”
(Fig.6.3-b) in comparison with Median filter.

MAD error in Median 3D CAR 3.5D CAR
spectral band filter model model
Red 0.078 0.078 0.054
Green 0.095 0.090 0.060
Blue 0.084 0.075 0.053
average value 0.085 0.081 0.056

and 3.5D CAR model are illustrated in Fig.6.3-d, Fig.6.3-e respectively. MAD
values for all methods are in Tab.6.3.

a) b) c) d) e)

Figure 6.4: Scratch “tmask2” (b) restoration in frame No.78 in the “tennis” sequence
(a)original frame-cut (b)corruption by the scratch (c)Linear Regression (d)3D CAR
model (e)3.5D CAR model.

tmask3 (Fig.6.5-b) is large area scratch with average width about 20 pixels.
The surrounding of scratch in the image sequence is similar as for “tmask2”. It
is zoomed and panned poster on the wall. The best classical method is again the
Linear regression (Fig.6.5-c). Similar MAD values has also Averaging method
but a visual appearance of its results is poor. The results of 3D CAR model
and 3.5D CAR model are in Fig.6.5-d, Fig.6.5-e respectively. MAD values for all
methods are in Tab.6.4.

The results of these tests are encouraging, and performance of 3D and also
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Table 6.3: MAD computed for proposed method performed on scratch “tmask2”
(Fig.6.4-b) in comparison with Linear Regression method.

MAD error in Linear 3D CAR 3.5D CAR
spectral band regression model model
Red 0.123 0.096 0.079
Green 0.133 0.112 0.088
Blue 0.134 0.117 0.093
average value 0.130 0.108 0.087

a) b) c) d) e)

Figure 6.5: Scratch “tmask3” (b) restoration in frame No.78 from the “tennis” se-
quence (a)original frame-cut (b)corruption by the scratch (c)Linear Regression (d)3D
CAR model (e)3.5D CAR model.

Table 6.4: MAD computed for proposed method performed on scratch “tmask3”
(Fig.6.5-b) in comparison with Linear Regression method.

MAD error in Linear 3D CAR 3.5D CAR
spectral band regression model model
Red 0.120 0.119 0.088
Green 0.203 0.185 0.133
Blue 0.268 0.246 0.193
average value 0.197 0.183 0.138

3.5D CAR model is satisfactory even if we don’t compensate the motion between
pixels from CN in different frames. This is possible due to relative small motion
speed (about 3-4 pixels/frame) in corrupted regions in the image sequence.

6.3.2 Test 2: Moderate Motion Velocity in Image Sequence

The frames No.0 and No.1 in “tennis” sequence (Fig.3.6-c,d) presents motion
of human hand with moderate speed (about 4 pixels/frame). The sequence is
corrupted by horizontal scratch tmask6 (Fig.6.6-b) with average width about 11
pixels, which is placed in image sequence in the area of player’s moving hand.
Hence it is advisable to compensate the motion between the following frames.
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Restoration results without motion compensation are shown in Fig.6.6. Orig-
inal frame is in Fig.6.6-a and frame corrupted by the scratch “tmask6” is in
Fig.6.6-b . Linear regression is the best from the classical methods with results
in Fig.6.6-c. After restoration by 3D CAR model we obtain Fig.6.6-d . After
adding of information from previous frame (3.5D CAR model) we get Fig.6.6-e.
Tab.6.5 offers exact MAD values in all spectral bands as well as MADA during
the tests.

a) b)

c) d)

e)

Figure 6.6: Scratch “tmask6” (b) restoration in frame No.1 from the “tennis” se-
quence (a)original frame-cut (b)corruption by the scratch (c)Linear Regression (d)3D
CAR model (e)3.5D CAR model without MC.

a) b)

Figure 6.7: Scratch “tmask6” Fig6.6-b restoration in frame “cars77” (a)3.5D CAR
model with MC by BM1 method (b)3.5D CAR model with MC by BM2 method.

Table 6.5: MAD computed for proposed method performed on scratch “tmask6”
(Fig.6.6-b) in comparison with Linear Regression method.

MAD error in Linear 3D CAR 3.5D CAR
spectral band regression model model
Red 0.104 0.124 0.077
Green 0.123 0.113 0.076
Blue 0.116 0.111 0.065
average value 0.115 0.116 0.073
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The 3.5D CAR model brings observable results improvements, in comparison
with 3D CAR model only, but there are visible artifacts on the left side of the
restored area (Fig.6.6-e) caused by tennis racket motion. To compensate this
motion, ME methods described in section 3.1 are employed: the simple Block
matching method (BM1) and it’s iterative improvement (BM2) introduced in [37].
Results of both methods are illustrated in Fig.6.7. Surprisingly simple method
BM1 (Fig.6.7-a) gives better performance then method BM2 (Fig.6.7-b), first of
all in mentioned left part of the scratch area. Exact MAD values in all spectral
bands as well as MADA value for both methods are introduced in Tab.6.6. In
term of MAD the results of the both method are worse then 3.5D CAR model
without MC, but visually the method BM1 brings observable improvement while
method BM2 is of no help.

Table 6.6: MAD computed for 3.5D CAR model with MC method performed on scratch
“tmask6” (Fig.6.6-b) in frame No.1 from the “tennis” sequence.

MAD error in 3.5D CAR model with
spectral band MC by BM1 method MC by BM2 method
Red 0.076 0.104
Green 0.093 0.123
Blue 0.087 0.116
average value 0.085 0.115

6.3.3 Test 3: Fast Motion Velocity in Image Sequence

When the fast motion (more than 10 pixels/frame) occurs in an image sequence
the MC between neighbouring frames is essential for proper function of 3.5D
CAR model. We performed our tests on frames No. 76 and 77 in “cars” sequence
(Fig.3.7) corrupted by the scratch mask4 (Fig.6.8-b). This scratch has thick
vertical shape with average width about 10 pixels and is placed in the image
sequence on the horizontally moving car-toy.

Firstly we performed the tests without MC and results are in Fig.6.8. Original
frame is in Fig.6.8-a and frame corrupted by the scratch “mask4” is in Fig.6.8-b.
Linear regression provided again the best results from all the classical methods
Fig.6.8-c. After restoration by 3D CAR model we obtain Fig.6.8-d. After adding
of information from previous frame (3.5D CAR model) we get Fig.6.8-e. From
the last image we can see obvious influence of the fast uncompensated motion, so
it means that data included into model from previous frame do not match with
those in current frame. Exact MAD values in all spectral bands as well as MADA

value are introduced in Tab.6.7.
To overcome this poor 3.5D CAR model results the MC compensation is nec-

essary. We performed ME by the same methods as in previous section. The
results of method BM1 and BM2 are depicted in Fig.6.9-a, Fig.6.9-b respectively.
There is only slight improvement in comparison with 3D model and uncompen-
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sated 3.5D CAR model, and the better method for fast motion estimation is
essential. To prove that with better ME method the results can be satisfactory
the motion is estimated manually as constant motion in one direction. This is
easy task in “cars” sequence, due to the movement of whole scratch area only for
18 pixels to the left in horizontal direction between previous and restored frame.
The result of this “ideal” ME method is depicted in Fig.6.9-c. The quality of
restoration grew obviously. All numerical results of tested MC methods in terms
of Mean Absolute Difference (MAD) are summed if Tab.6.8.

Also employing of this MC algorithm demands more computations and pro-
longs the total time for restoration in comparison with 3.5D CAR model without
motion compensation.

The results of the whole restoration method during the fast motion can be
improved in several ways. The often used approach is to include multi-resolution
pyramid onto the ME scheme as was described in section 3.1. Next possible
improvement can be performed by implementation of more sophisticated methods
for the motion vectors interpolation into the scratch area from its surrounding.

Table 6.7: MAD computed for proposed method performed on scratch “mask4”
(Fig.6.8-b) in frame No.77 from the “cars” sequence in comparison with Linear Regression
method.

MAD error in linear 3D CAR 3.5D CAR Motion Compensated
spectral band regression model model 3.5D CAR model
Red 0.210 0.149 0.182 0.086
Green 0.173 0.138 0.203 0.085
Blue 0.095 0.115 0.186 0.089
average value 0.159 0.134 0.190 0.087

Table 6.8: MAD computed for 3.5D CAR model with MC performed on scratch
“mask4” (Fig.6.8-b) in frame No.77 from the “cars” sequence.

MAD error in 3.5D CAR model with
spectral band MC by BM1 method MC by BM2 method manual MC
Red 0.143 0.149 0.092
Green 0.131 0.136 0.087
Blue 0.110 0.116 0.071
average value 0.128 0.134 0.083
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a) b) c)

d) e)

Figure 6.8: Scratch “mask4” (b) restoration in frame No.77 from “cars” sequence
(a)original frame-cut (b)corruption by the scratch (c)Linear Regression (d)3D CAR
model (e)3.5D CAR model without MC.

a) b) c)

Figure 6.9: Scratch “mask4” (Fig6.8-b) restoration in frame No.77 from “cars” sequence
(a)3.5D CAR model with MC by BM1 method (b)3.5D CAR model with MC by BM2
method (c)3.5D CAR model with manual MC.
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Influence of parameters σ and ρ on results is described in Figs.6.11, 6.12.
There are depicted these graphs for both 3D (Figs.6.11-a, 6.12-a) and 3.5D CAR
model (Figs.6.11-b, 6.12-b). From dependency of average MAD on forgetting
factor ρ (Fig.6.12) is obvious that for tested scratches are the best values ρ =
0.980−0.995. Dependency of average MAD on length of model history σ is more
difficult to interpret. From the graph Fig.6.11 we conclude that appropriate
σ value depends on the scratch width. So the larger the scratch is the bigger
value of σ is necessary to get satisfactory results. On the other hand the long
model history σ can negative affect the results when the predictor updates his
parameters by improper data in further distance from the scratch and this data
don’t match with scratch tight surrounding. This occurs even if the forgetting of
older data by exponential factor ρ is performed. Example in Fig.6.10-c shows bad
prediction in the upper part of the scratch caused by this problem when σ = 20
pixels and the scratch width is about 6 pixels.

a) b) c)

Figure 6.10: The example of improper data prediction when the model history σ is too
long. (a)original (b)with scratch (c)restored by 3D CAR model σ = 20pixels.

Thus it is advisable to adapt σ value choosing dependently on the scratch
shape and data pattern in the surrounding. From graph for 3D CAR model in
Fig.6.11 we induce that appropriate value for scratches “tmask1” Fig.6.3-b and
“tmask2” Fig.6.4-b is σ = 5 pixels and for scratch “tmask3” Fig.6.5-b σ = 15
pixels. After several experiments we conclude that appropriate equation for σ

value choosing is

σOPT =
actual scratch width

2
+ 5 (6.3)

To prevent MAD error increasing when the σ is too small (see Fig.6.11) the
minimal σ is constrained to 5 pixels (6.3). Thus the predictor have always certain
information about character of the data in the past.

Final results are affected, except mentioned model parameters, also by kind
of data pattern in the scratch surrounding. The method results are influenced
also by number of CAR model parameters initialisations. However the influence
isn’t so significant thanks to forgetting factor ρ, which suppress the older data
impact during predictor parameters computation.
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Figure 6.11: Dependency of average MAD value (MADA) on the length of model history
σ during restoration of different scratches in frame No.78 from the “tennis” sequence (a)
by 3D CAR model (b) by 3.5D CAR model.
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Figure 6.12: Dependency of average MAD value (MADA) on the forgetting factor ρ

during restoration of different scratches in frame No.78 from the “tennis” sequence (a)
by 3D CAR model (b) by 3.5D CAR model.
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Chapter 7

Conclusions and Further

Research

The results of our tests are encouraging. The proposed method has a superior
performance to the classical methods in terms of the mean absolute difference
(MAD) as well as the subjective visual quality. For sequences with fast moving
objects, the method requires a fast and accurate motion detection. However even
if the reliable motion estimation is missing the method can be easily restricted
to single frame support data with slightly compromised restoration quality. The
proposed method is fully adaptive, numerically robust and with moderate com-
putation demands so it can be applied in an on-line restoration systems. The
algorithm is not limited to motion pictures only. It can be applied on any de-
graded image sequence obtained by applications in remote sensing, astronomy,
microscopy or medical field.

The way in further improvement of the method is in adaptive choosing of
parameters ρ and σ dependently on the scratch size and data pattern which sur-
rounds the corrupted area. There is also possible to test Jeffreys parameter prior
instead of used normal-Wishart during computing of one-step-ahead prediction.

The proposed restoration method restores the data in horizontal or vertical
direction. This can be drawback if some more difficult scratch shape occurs.
The one solution is to divide the scratch into several more-or-less horizontal and
vertical parts and restore them in a sequence. The complexity of the scratch shape
can be easily evaluated if the scratch skeleton is computed. The scratch then can
be simply segmented in places where the skeleton curve changes direction. The
example of idea is depicted in Fig.7.1.

In this thesis was mentioned necessity of motion compensation for proper func-
tion of 3.5D CAR model. The second necessary application of motion compensa-
tion is scratch detection in image sequence. The shape of the scratches evaluated
in this thesis is almost arbitrary so it is impossible to use methods for scratch
detection assuming some apriori information about scratch shape or placement in
image as for example Hough transformation for vertical line scratches [18]. So the
universal scratch detection assumes knowledge about motion between two con-
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Figure 7.1: An idea of difficult scratch shape restoration using its skeleton.

secutive frames in image sequence. The pixel values in one frame are then shifted
accordingly to the known motion vectors in pixel coordinates in second frame
(motion compensation). Then the difference between both frames is computed
and after the results thresholding the corrupted areas (scratch) are detected.

There are several remaining problems in the field of image sequences scratch
restoration. One of them consists in the appropriate restoration method param-
eters adaptation according to known data in image sequence. The second task is
robust and fast scratch detection, which is based mainly on proper motion estima-
tion algorithm. So the fast and accurate motion estimation method development
is the main encourage for the further research.
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[15] M. Haindl and S. Šimberová. A scratch removal method. Kybernetika,
34(4):423–428, 1998.
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Appendix A

A.1 Tested Contextual Neighbourhoods

The CN with the best performance during the testing on “’tennis” and “cars”
sequences are marked by dashed framebox.

a)

b)

Predicted pixel

Support pixel

frame n−1

frame n

Figure A.1: An overview of all tested contextual neighbourhoods (a)for 3D CAR model
(b)for 3.5D CAR model.
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Appendix B

B.1 The Enclosed CD Contents

In this thesis is enclosed a CD with:

• animations of restored sequences,

• complete presentation in Windows PowerPoint,

• electronic version of this document in a PostScript format.
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