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Chapter 1Introdution and MotivationIn ontemporary virtual reality (VR) systems demands grow for realisti and auratemodelling of visual properties of real materials in partiular for purposes of visual safetysimulation in automotive industry and ar/arhitetural interior design among others.Standard smooth textures ombined with reetane models and bump mapping show notto be able to aurately apture real material behaviour, whih depend on mesostrutureroughness and anisotropi reetane properties. The solution is employing rough texturesthat imitate reetive properties as lose as possible to an original material with respetto illumination and view positions.Although there is not any de�nition of texture generally aepted we an assume tex-ture as random �eld realisation with spatially homogeneous properties whose prinipalharateristi is a repetition of a basi visual pattern. We an prinipally divide texturesinto two major ategories. The smooth textures are textures whih ful�l Lambertian law,i.e., their appearane is independent on illumination and view diretion and representideally di�use material. However, many of real-world materials violate this Lambertianassumption whih results into the seond major ategory - rough textures. Rough texturereetane depends on illumination and viewing diretion and this is aused by surfaestruture of the original material (shadowing, masking) or its underlying physial proper-ties (anisotropi speularity, inter-reetions, subsurfae sattering).Although the rough textures allows aurate simulation of surfae appearane, dueto their high dimensionality their measurement, representation and modelling was signif-iantly limited in the past. Nowadays with onstant inrease of available omputationalpower the number of available VR systems inreases as well as their overall omplexity.Moreover, ontemporary graphis hardware beame a very powerful tool for omputationsperformed in eah individual fragment of virtual senes. These advaned and ontinuallydeveloping graphis tehniques enable to proess relatively omplex models that representappearane of real-world materials used to over objets in VR systems.Visual pereption of suh objets signi�antly depends not only on their shape butpartiularly on the representation of the surfae materials. The most ommon, om-putationally simple approah in the past was based on using a single smooth texture litaording to empirial reetane model, optionally ombined with a bump-mapping teh-nique. Later the real material reetane was measured to apture the original reetanewith respet to varying light and amera positions. This so alled Bidiretional ReetaneDistribution Funtion (BRDF) was ompressed and approximated by variety of analyti-al models in the past. BRDF, in itself, does not preserve texture information, so this1



2 Chapter 1. Introdution and Motivationapproah was suitable mainly for homogeneous materials as, e.g., metals, plastis, ivoryand another polished homogeneous surfaes. However, a large number of real rough sur-faes suh as plaster, leathers, fabris et. have ompliated spatial struture that ausese�ets suh as shadowing, masking, inter-reetion and sub-surfae sattering dependenton di�erent illumination and view diretions. During last years a new preise rough tex-ture representation has appeared in form of Bidiretional Texture Funtion (BTF). BTFis a six-dimensional funtion whih introdues additional dependeny of measurements onmaterial planar position. This means that BTF preserves, in ontrary to BRDF, also thedesired spatial texture information.The importane of BTF is shown in Fig. 1.1. The �gure depits objets overedby two di�erent BTF materials lighted from three di�erent illumination diretions. Thehange of illumination and view diretions onsiderably a�ets the visual appearane ofreal materials and eah of them in di�erent way - this an be relatively easily reorded bymeans of BTF.
Figure 1.1: Example of BTF behaviour for two di�erent materials.The BTF measurements are usually represented by means of thousands of images takenfor di�erent illumination and viewing diretions. Consequently, the storage size of suhmeasurements is several GB depending on planar and angular BTF resolution. Due tothis huge storage size the raw BTF data an not be diretly used for any fast appliationeven when high-end ontemporary graphis hardware is employed.For fast rendering of BTF on objets in VR an eÆient BTF model is required. Themain motivations and goals of the BTF modelling are:� Data ompression - Due to limited GPU memory the data size of original BTFmeasurements prevents any fast appliation. The size of BTF have to be onsider-ably redued to enable rendering of omplex senes omprehending several di�erentmaterials 1.� BTF enlargement - Measured BTF is always too small to seamlessly over virtualobjet surfae of required size.� BTF reonstrution - Ideal BTF modelling method should allow BTF reonstru-tion for unmeasured ombinations of view and illumination angles within range ofpossibly spare set of BTF measurements.� Visual quality preservation - Measured BTF desribes real material reetaneproperties and its main visual features and harateristis that have to be preserved.� Fast rendering of data from a BTF model - Fast appliations implementeddiretly in graphis hardware require eÆient synthesis algorithms working preferablyin pixel-wise manner.1All ompression ratios in this thesis are related to a size of the original University Bonn BTF measure-



1.1: Objetives of the Thesis 3As BTF modelling is quite a new researh area at the frontiers of omputer graphis,omputer vision and image proessing, not too many publiations exist so far in this�eld when ompared to other researh areas. Most of them address sample based BTFompression methods to store original or pixel-wisely parametrised BTF samples, thus theproblem of texture enlargement remains open. Most reent methods are based either onlustered pixel-wise BRDF models (ABRDF) or on linear basis deomposition. The BTFmeasurements are enlarged by means of simple image repetition or seamless image tilingapproahes. The rest of the methods synthesises novel BTF images by interpolation ofspare set BTF measurements aording to Lambertian reetane funtion or by mathingestimated range-map of material with these spare BTF measurements.However, till now no generi BTF modelling approah is available whih does not needto store neither BTF samples nor any of their pixel-wise parametri representation. Noneof ontemporary BTF models an be onsidered perfet for all appliation �elds, types ofapproximated material, required speed and visual quality.1.1 Objetives of the ThesisThe main objetives of this thesis are as follows:� Provide a survey of rough texture measurement, representation, ompression andmodelling methods published up to now.� Provide an overview and omparison of publily available BTF databases.� Introdue two novel BTF modelling approahes and the orresponding models.The �rst of them is probabilisti BTF modelling approah based on BTF segmen-tation and subsequent modelling of obtained subspae images by means of severaldistint Markov Random Field (MRF) models. Due to the fat that simple MRFshave diÆulties to reprodue regular low frequeny struture of measured material,we have used displaement mapping �lter whih ombines the synthesised subspaeimages with estimated range-map of modelled material.The seond proposed BTF modelling approah is a polynomial extension of pixel-wise Lafortune reetane model. Synthesised BTF data are enlarged by means ofimage tiling of the model parameter spae. To ahieve higher ompression ratios weemploy an additional parameter lustering tehnique.Both of these approahes enable fast hardware implementation in ontemporary VRsystems and were developed in the sope of EC projet IST-2001-34744 RealReet(Real Time Visualization of Complex Reetane Behaviour in Virtual Prototyping)[1℄. The main objetive of this projet was the development of advaned VR systemaimed to high-end interior design in arhiteture and automotive industry. Fordesign purposes the appearane of virtual objets has to be realisti, whereas thespeed of rendering is assumed to be at interative frame-rates. Although raw BTFmeasurements an with an additional enlargement method reprodue the reetaneproperties of observed material very realistially, due to huge size of this BTF dataments [98℄. Eah suh a BTF dataset has angular resolution ni � nv = 81� 81 and orresponding planarresolution of BTF images is 800 � 800 (see Setion 3.3).



4 Chapter 1. Introdution and Motivationthe rendering speed is unfortunately very low. However, the proposed BTF modelso�er reasonable visual quality while the amount of data to be stored is onsiderablyredued and fast rendering is guaranteed.1.2 Chapter OutlinesThe thesis is divided in hapters as follows:Chapter 2: Rough Surfae Reetane Representation Contains a short reviewof material surfae appearane measurement and modelling methods published up to now.Inludes brief desription of methods for representation and modelling of BRDFs, BSS-RDFs and BTFs and disuses their basi properties.Chapter 3: BTF Databases This hapter desribes three publily available BTFdatabases and disusses their properties and limitations.Chapter 4: BTF Rendering The basi problems ourring in BTF rendering andorresponding suggested solutions are proposed in this hapter. Inludes BTF mapping,interpolation and additional surfae marostruture simulation by means of bump or dis-plaement mapping.Chapter 5: Range-Map Aquisition Range-maps and normal-maps enable one wayof surfae height simulation and takes part in proposed probabilisti BTF model introduedin Chapter 7. Di�erent methods of range data aquisition and estimation are disussedand ompared, and their results on real materials are provided.Chapter 6: Segmentation of BTF Data This hapter desribes the proposed ap-proah of BTF segmentation of spae of illumination and view diretions into several BTFsubspaes. This enables eÆient subspae modelling by means of probabilisti BTF modelintrodued in Chapter 7.Chapter 7: Probabilisti BTF modelling A novel BTF model based on ombinationof BTF segmentation, MRF probabilisti model and rough struture modelling based ondisplaement �lter is introdued together with numerous results for distint materials.Additionally, properties of the proposed model are disussed as well as possibilities of itsfast implementation in hardware.Chapter 8: BTF Modelling Using Reetane Models This hapter introduesthe novel reetane BTF model based on polynomial extension of one-lobe Lafortunereetane model and its lustered variant. Several ways of BTF enlargement are disussedand the hapter provides obtained results in omparison with original BTF measurements.Chapter 9: Results Veri�ation and Testing This hapter summarises the methodsfor quality veri�ation and testing of individual proposed BTF models.



1.2: Chapter Outlines 5Chapter 10: Conlusions and Future Work This hapter summarises ahievedresults of BTF modelling and also mention open problems beyond the sope of our researhand suggests further researh diretions of BTF modelling.



Chapter 2Rough Surfae ReetaneRepresentationThe main purpose of this hapter is to provide general information about researh per-formed so far in the �eld of realisti modelling of real-world materials appearane. Eahsuh a rough material an be haraterised with respet to its visual appearane usingfollowing three major appearane levels:� Marostruture level - representing texture pattern repetition (usually low fre-quenies in orresponding texture image). Texture information on this level an beapproximated by means of surfae height measurements using displaement mappingwith additional polygonal tessellation.� Mesostruture level - inludes relatively small yet still visible geometri details(usually higher frequenies in orresponding texture image), e.g., small bumps,woollen knits, et.� Mirostruture level - involves surfae mirofaets whih are visually indistin-guishable and whih ontrol the overall appearane of material depending on viewangles aording to physial rules, e.g., smooth �bers of textile, whih reet lightmore eÆiently if the light shines parallel to their orientation.Depending on atual appliation task the real materials are modelled in sope of ap-propriate level. This approah enables signi�ant redution of the omplexity of inputhigh-dimensional data and onsequently allows using simpler data representation. E.g.,material modelling in sope of mirostruture level redues to single olour reetanemodelling while the marostruture level requires a model that preserves the spatial stru-ture of the material.Several types of material representation have been used in omputer graphis up to nowwhose omplexity onsiderably depends on onrete appliation �eld. The most ommonmaterial representations as well as their mutual relations are shown in Fig. 2.1. Firstwe desribe the most ommon BRDF representation that provides material reetaneinformation depending on illumination and viewing position. Several of BRDF modellingmethods based on fatorisation or reetane models published up to now are disussed.However, the BRDF have proved to be insuÆient for satisfatory representation of roughor textured materials, what led to further researh and introdution of more omplex6



2.1: Bidiretional Reetane Distribution Funtion 7
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functionFigure 2.1: The overview of real-world material representations in omputer graphis.representation models. The most general of them is Bidiretional Subsurfae SatteringReetane Distribution Funtion (BSSRDF). This eight-dimensional funtion omprisesreetane values for any ombination of inoming / outgoing planar positions on materialsample and illumination / viewing diretions. Sine it is quite diÆult to measure andeven model suh a omplex funtion, its simpli�ation onsisting in uni�ation of inomingand outgoing planar position was neessary. This simpli�ation results in six dimensionalBTF whih is used for photo-realisti rendering of real-world materials nowadays. Thisfuntion is usually represented by a set of illumination / view dependent images and thusits size is still onsiderably large. Thus the development of eÆient BTF ompressionand synthesis algorithms to enable fast BTF rendering using standard graphis hardwareis one of main hallenges in omputer graphis ommunity as well as main topi of thisthesis. As BTF modelling is quite a new researh area, there is not as many related resultsas in other researh �elds available. However, many ontemporary image data proessingalgorithms an be favourably employed.2.1 Bidiretional Reetane Distribution FuntionMaterial surfae at miro-struture level an be represented by Bidiretional ReetaneDistribution Funtion (BRDF). BRDF is a 4D funtion introdued in work of Niodemus[88℄ whih desribes the relation between inident irradiane E from diretion !i = [�i; �i℄and radiane L reeted o� observed material to diretion !v = [�v; �v ℄ (see Fig. 2.2 and(8.1)) aording to the following equationBRDF (�i; �i; �v; �v) = dLv(�i; �i; �v; �v)dEi(�i; �i) (2.1)where � and � depit elevation and azimuthal angles respetively (see Fig. 2.2). BRDFaptures physial reetane behaviour of uniform surfae elements. It is alled bidire-tional beause the inident and reeted diretions an be reversed for the funtion toreturn the same value. This fat follows from the physis of light [5℄.BRDF has two main important properties. The �rst one is the Helmholtz reiproity



8 Chapter 2. Rough Surfae Reetane Representation
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CFigure 2.3: Light vetor trajetory above thesample. The movement of illumination starts atthe top of.rule [10℄ ful�lling 8!v 2 H 8!i 2 H (2.2)BRDFr3(�i;1; �i;1; �v;1; �v;1) = BRDFr3(�i;2; �i;2; �v;2; �v;2)where �i;2 = �v;1; �i;2 = �v;1; �v;2 = �i;1; �v;2 = �i;1 and H means the set of all possiblepositions on a hemisphere above the material.The seond property is the energy onservation law where the BRDF has to ful�lfollowing normalisation ondition8!v 2 H Z!i2HBRDFr3(�i; �i; �v; �v)(N � !v)d!v � 1 : (2.3)where N is surfae normal at a given point and !v is viewing vetor.Aording to BRDF shape two kinds of surfaes are distinguished:� Di�use surfaes { the light is reeted in every diretion. The limit ase is Lamber-tian surfae, i.e., the BRDF beomes a onstant funtion when the light is reetedin every diretion equally.� Speular surfaes { the light is reeted only in a small area lose to the mirrorreetion. The limit ase, i.e., the perfetly speular (Fresnel) surfae, is obtainedwhen the BRDF beomes a Dira funtion when the light is reeted in one singlediretion.2.1.1 BRDF MeasurementBRDF an be measured using gonioreetometers. This devie mehanially moves theposition of light soure and spetral sensor owing to measured material and ollets largenumber of point samples. Beause the BRDF is in general a funtion of four angles, twoinident and two reeted, suh a devie must have four degrees of freedom to measurethe omplete funtion [116℄.Another advaned BRDF measurement system together with data-driven reetanemodel was presented by Matusik et al. in [74℄. This measurement proess gives 20-80millions of BRDF samples per material. These samples are aquired at speial oordinate



2.1: Bidiretional Reetane Distribution Funtion 9system based on view and illumination angles with respet to the half angle vetor insteadof the normal vetor as it is ommon. This oordinate system allows to vary the samplingdensity near the speular highlight. This results in assigning higher angular resolutionnear speular reetion and vie versa.Diret measurement is not the only way of obtaining BRDF. Ashikhmin introduesin [2℄ an eÆient method that takes as input 2D miro-faet orientation distribution andprodues a 4D BRDF. This method uses a simple shadowing term allowing to handlegeneral miro-faet distributions while maintaining reiproity and energy onservation.Finally, the simplest way to obtain BRDF data is BTF data averaging in ontextualneighbourhood ontaining all kinds of struture elements presented in original material.2.1.2 BRDF ModellingThe main goal of BRDF modelling has been to develop a ompat BRDF representation toenable fast rendering in graphis hardware. The BRDF measurements were approximatedby several methods in the past. We present the main ones in the following.2.1.3 BRDF FatorisationBRDF an be represented by means of spherial harmonis [120℄ whih are analogous toFourier series, but in the spherial domain. Spherial harmonis are espeially suitable forrepresenting smooth spherial funtions. This is often the ase with reetane funtions.Using this method the BRDF (ontaining hundreds of measurements) an be representedusing only up to 25 oeÆients. 4D BRDF representation for real-time rendering applia-tions utilising a 2D table of spherial harmonis oeÆients was introdued in [55, 102℄.Another BRDF fatorisation method [52℄ exploits singular value deomposition (SVD)for separable BRDF deomposition. BRDF is replaed by the sum of produts of two2D funtions stored in texture maps. Final BRDF reonstrution an be performed bymeans of a fast hardware-implemented multipliation of these texture maps. Moreover,the authors reommend normalised deomposition instead of SVD. This deomposition isfaster, simpler and uses no more omponents than is required for �nal representation.Even more eÆient BRDF fatorisation method based on homomorphi fatorisation(HF) was introdued in [76℄. Homomorphi fatorisation, similarly to SVD, deomposesBRDF into several fators of lower dimensionality, eah fator dependent on a di�erentinterpolated geometri parameter. Compared to SVD this tehnique generates a fatori-sation with only positive fators, enables ontrol over the result smoothness and workswell with sattered, sparse data without a separate resampling and interpolation algo-rithm. This approah was extended in [65℄ for isotropi BRDF lighting omputation usingenvironment maps.A 4D surfae light �eld funtion fatorisation by means of non-negative matrix fa-torisation was shown in [9℄ to be signi�antly easier to implement than the homomorphifatorisation mentioned above. Compared to PCA the HF produes non-negative basisimages that form a parts-based representation and all of them are needed to reproduea onsistent approximation of the input data.



10 Chapter 2. Rough Surfae Reetane Representation2.1.4 BRDF Approximation Using Reetane ModelsAnother BRDF modelling approah employs reetane models for BRDF approximation.Several reetane models have been ommonly used for surfae rendering in omputergraphis. They an be divided into two major ategories. The �rst inludes simple butphysially inorret empirial models while the seond omprises theoretial, physiallyvalid and more omplex models. Both kinds of models attempt to approximate the realreetane funtion, represented by the BRDF, but the respetive approahes are quitedi�erent.Empirially Derived Reetane ModelsThe empirial model is usually based on a very simple formula with several adjustableparameters designed to �t ertain lass of reetane funtions. Empirial model designdoes not pay attention to physial derivation or signi�ane of individual parameters.Although these models are not physially plausible, they an o�er omputational simpliityfollowing from low number of model parameters. The simpliity of empirial modelsenables their fast hardware implementation, what is the reason of their wide use to thisday.Probably the best known empirial model was introdued by Phong in 1975 [91℄.This model has only three parameters in separated di�use and speular terms [64℄. Themodel is not physially plausible, therefore it is very hard to �nd the relation betweenthe parameters of the model and the physial harateristis of the represented material.Thus the Phong model an not apture important reetane e�ets, e.g., it enables toemit more light than is reeived.A modi�ation of the original Phong model targeted to ahieve more realisti reetionsis the Blinn-Phong model introdued by Blinn in [6℄. This model is usually used forhardware aelerated bump-mapping.Next empirial anisotropi reetane model was introdued by Banks et al. in [4℄.This model assumes small �bers along the given tangent, resulting in anisotropi ree-tions. It an be omputed using a ombination of dot-produt omputations and blendingoperations.Another BRDF model ombining the advantages of the various empirial models wasintrodued in Ashikhmin et al. [3℄. The authors use a Phong-based speular lobe but makethis model anisotropi and inorporate Fresnel behaviour while attempting to preservethe simpliity of the initial model as well as physial plausibility. For improving energyonservation of the Phong model for metalli materials the result of [87, 86℄ is used.Although the model is mostly empirial it interprets ertain parts of speular term usingphysial-based miro-faet models [12, 116℄. The approximation presented in [99℄ is used asa Fresnel fator. The di�use term is realised in form of a modi�ation of non-LambertianBRDF presented in [100℄ whih allows the di�use-speular trade-o� to onserve energy.This model is easy to use in Monte Carlo frameworks.A di�erent empirial BRDF model was introdued by Matusik et al. [74℄. A BRDFmeasurement devie is introdued and used to aquire BRDFs for more than hundred dif-ferent materials was measured by means of this devie, inluding metals, plastis, paintedsurfaes, et.. Eah measured BRDF is treated as high-dimensional vetor and its di-mensionality is subsequently redued by means of linear analysis (PCA) and non-linearredution (harting - subspae projetions of measured samples). These redutions lead to



2.1: Bidiretional Reetane Distribution Funtion 1110D manifold whih is approximately onsistent with many theoretial isotropi reetanemodels. Finally the model is tuned for atual material by visual inspetion evaluating 16user de�ned diretions to navigate in the redued-dimensions of BRDF spae. On the low-dimensional manifold, movement along these diretions produes novel but valid BRDFs.This empirial model ful�l reiproity, non-negativity and energy onservation.Another empirial model is desribed in [84℄. Authors use the same V-faets as Tor-rane and Sparrow [112℄, but assume Lambertian reetane of these faets. First a re-etane model is developed for anisotropi surfaes with one type of V-faets with allfaets aligned in the same diretion of surfae plane. This result is then used to derivea model for the more general ase of isotropi surfaes that have normal faet distribu-tions with zero mean and arbitrary standard deviation whih parametrises the marosopiroughness of the surfae. The authors have pointed out that several real-world objetshave di�use omponents that are signi�antly non-Lambertian. They intended their modelfor use in algorithms that analyse images of di�use surfaes and reover aurate shapeinformation.Physially Derived Reetane ModelsOne of the �rst theoretial reetane models has been introdued in omputer graphisby Torrane and Sparrow [112℄. This analytial BRDF model assumes a surfae onsistingof vertial V grooves { perfetly speular miro-faets. The miro-faets normals deviationfrom the average surfae normal is assumed to be a zero-mean Gaussian - the higher is thevariane of deviation the rougher the surfae. The model an be divided to two parts. The�rst one is assoiated with bulk material e�ets leading to a Lambertian lobe oloured bythe di�use albedo at a partiular position on the surfae. The seond is entirely relatedto surfae satter.The Torrane and Sparrow model was later enhaned by Cook and Torrane [12℄, whotake use of the work previously done in physis by Torrane and Sparrow [112℄ aboutreetion of eletromagneti waves on rough surfaes. In that model, a surfae is againsupposed to be omposed of miro-faets, i.e., small smooth planar elements. Only a partof miro-faets ontribute to the reetion. The approximated BRDF depends on �vedi�erent angles and is expressed as a linear ombination of a di�use and speular reetor.The more omplete BRDF model has been proposed by He et al. [42℄. This sophis-tiated model based on physial optis inorporates the speular, diretional di�use, anduniform di�use reetions of a surfae. The model aounts for every physial phenomenainvolved in light reetion on rough surfaes suh as polarisation, di�ration, interferene,ondutivity. In omparison to Cook and Torrane model [112℄ an additional term appearsin the linear ombination to represent oherent reetion on the mean plane of the surfae(i.e., not the miro-faets).Ward [116℄ presented even more omplex, physially plausible anisotropi reetanemodel based on Gaussian distribution of miro-faets. In ontrast to previous work of Heel al. [42℄ where not enough attention had been paid to normalisation of the reetanefuntion the presented model has built-in normalisation as well as other desirable features,suh as permitting quik evaluation for data redution and Monte Carlo sampling [117℄.The model has the neessary bidiretional harateristis and all four of its parametershave physial meaning and an be �t independently to measured BRDF data to produephysially valid reetane funtion. This reetane model was �tted to BRDF measure-



12 Chapter 2. Rough Surfae Reetane Representationments of real materials obtained by means of measurement setup presented in the samepaper [116℄. Ward's measurement method exploits hemispherial mirrors reeting thewhole hemisphere of the at probe at one onto a CCD amera equipped with �sh-eyelens. This method aptures the entire hemisphere of reeted diretions simultaneouslywhat onsiderably aelerates the whole measurement proedure.Shlik's BRDF model published in [99℄ stands halfway between empirial and the-oretial models. In this paper a rational fration distribution is utilised for reetanefuntion representation. The idea is based on kernel onditions, whih an be any intrin-si harateristi of the funtion (value at a given point of the funtion and one of itsderivatives, integral or di�erential equations, et.). Introdued rational fration approxi-mation sheme enables to speed-up the omputation of reetane model. Moreover, theauthor introdues an approximation of Fresnel fator, geometrial attenuation oeÆientand slope distribution while the BRDF gets separated into spetral and diretional fa-tors. The model requires only a few intuitively desribe reetane parameters to de�nea material and a formulation of varying omplexity is provided whih is well suited toMonte Carlo rendering methods.One of the �rst BRDF models whih take into aount the wave-like properties oflight was published by Stam in [108℄. This physial model is based on Kirhho� integralsand is able to approximate di�ration of light on arbitrary surfae struture and an betaken as a ommon generalisation of earlier approximative physial models mentioned inthis setion above. This model does not omprise suh e�ets as multiple sattering andsubsurfae sattering and enables relatively easy implementation.Phong's, Blinn-Phong's and Ward's models were deomposed into several fators toenable their omputation diretly in graphis hardware [53℄ . The individual models wereombined with material textures (range-map, et.) whih ontrol strength of the modelanisotropy.The main goal in optimal BRDF model development is �nding a ompat representa-tion whih an aurately desribe the dominant behaviour of the BRDF. The representa-tion should be omputable using an iterative algorithm that would monotonially onvergeto a orret solution. Moreover, suh a model should be physially plausible, reiproaland energy onserving as well as easy to implement in graphis hardware. These ondi-tions are ful�lled by the model presented in Lafortune et al. [63℄. This model is basedon osine lobes and represents material reetane by means of a new lass of primitivefuntions with nonlinear parameters. These funtions are reiproal, energy-onserving,apture important BRDF features as o�-speular reetion, inreasing reetane withangle of inidene, retro-reetion while the representation is ompat and uniform.Generally, the reetane funtion representation by means of BRDF works well for smoothnon-textured materials as, e.g., metal or glass, but is absolutely insuÆient for roughtextures like textiles or leathers due their loal non-homogeneity, whih auses:� Masking - parts of the material surfae are invisible from view position due to theirolusion by other surfae parts (masking by intersetion) or due to their orientationaway from view position (self-masking).� Shadowing - parts of the surfae are not irradiated due to their orientation (self-shadowing) or beause the inident beam is interseted (shadowing by intersetion).



2.2: Bidiretional Subsurfae Sattering Reetane Distribution Funtion 13� Interreetions - parts of the surfae irradiate other parts, thus produing multiplesattering.� Subsurfae sattering ours in slightly transluent materials. Light enters theirsurfae, is sattered around inside the material, and then exits the surfae, poten-tially at a di�erent point from where it entered.To represent at least some of these e�ets the following material desription funtionshave been introdued reently.2.2 Bidiretional Subsurfae Sattering Reetane Distri-bution FuntionA general material surfae introdues subtle lighting e�ets, suh as masking, shadowing,interreetions and subsurfae sattering. To apture all these e�ets a more generalapproah than simple BRDF is inevitable.The most general desription of material reetane properties o�ers a 8D BidiretionalSubsurfae Sattering Reetane Distribution Funtion (BSSRDF) desribed as followsBSSRDFr3(ri1; ri2; r1; r2; �i; �i; �v; �v) (2.4)where ri1; ri2 represent planar oordinates where the light enters into the material, r1; r2represent planar oordinates where the light emits from the material while � and � areelevation and azimuthal angles of illumination i and view v positions (see Fig. 2.2).BSSRDF desribes the light transport between every point on the surfae for anyillumination and view position. Obviously, the omplexity of BSSRDF based methods [45℄limits their appliation mainly to homogeneous di�use materials suh as uids, marble,et..Reent measurement tehniques [32℄ enable to apture BSSRDF for transluent in-homogeneous materials with strong subsurfae sattering e�ets. However, the authorsassumed di�use surfae reetions and did not pay attention to angular dependeny oflaser beam light soure or light sensor. The rendering method exploiting subsurfae sat-tering e�et is presented in [67℄. Nowadays there is no method enabling us to measure oreven model the BSSRDF in its whole omplexity available.2.3 Bidiretional Texture FuntionSine there is not any fast method available neither for measurement nor for modellingof BSSRDF up to now, it is inevitable to use a simpli�ed variant of the BSSRDF en-abling universal measurement of reetane data for rough materials. One solution isthe Bidiretional Texture Funtion (BTF). BTF is a six dimensional funtion, similarlyto BSSRDF, dependent on illumination and view angles as well as on planar position onobserved material surfae (2.5).BTFr3(r1; r2; �i; �i; �v; �v) (2.5)Atually, the BTF represents one planar texture for eah ombination of illuminationand view position. Thus the BTF integrates subsurfae sattering light intensity from



14 Chapter 2. Rough Surfae Reetane Representationneighbouring material surfae loations in individual BTF images by means of samplemeasurements. Thus the subsurfae sattering e�et an not be �gured out, however, itis preserved in BTF measurements and an be modelled together with other reetaneproperties of an observed material sample.BTF was �rst presented in work of Dana et al. [16℄. Only three BTF measurementdatabases have been made publi so far. Real BTF measurements onsist of several thou-sands material sample images taken for di�erent ombinations of illumination and viewpositions. The standard BTF measurement omprehends whole hemisphere of possiblelight and amera positions of observed material sample aording to preseleted angularquantisation steps (see Fig. 2.3 for University of Bonn BTF measurement quantisation).An appropriately measured BTF o�ers enough information about material propertiesas is anisotropy, masking or self-shadowing. In ontrast to a regular 2D texture or toBRDF, BTF is high-dimensional and involves large amounts of data. To render BTF ongraphis hardware, a ompat representation of the BTF is needed. The best urrentlyavailable BTF [98℄ takes up about 2GB of storage spae per sample. BTF databasefor moderately omplex VR senes an take up to several TB of data spae. Hene someompression and modelling method of this huge BTF datasets is inevitable. Suh a methodshould provide ompat parametri representation and preserve main visual features ofthe original BTF as muh as possible, while enabling its fast rendering in ontemporarygraphis hardware.The modelling of BTF as a 6D funtion is not trivial, thus task so many researhersfatorised BTF into individual subsets of textures. The two most frequently used BTFsubsets are Surfae Light Field (SLF) and Surfae Reetane Field (SRF).The surfae light �eld (2.6) represents the BTF slie ontaining all the BTF imagesorresponding to a �xed illumination position i.SLFr3(r1; r2; �i; �i) � Li (2.6)Similarly the surfae reetane �eld (2.7) represents the BTF slie ontaining all the BTFimages orresponding to a �xed view position v.SRFr3(r1; r2; �v; �v) � Rv (2.7)2.3.1 BTF MeasurementOnly few BTF measurement systems exist up to now. These systems are (similarly toBRDF measurement systems) based on light soure, video or still amera and materialsample moving using a robot arm. The main di�erene between individual BTF measure-ment systems is in type of measurement setup allowing four degree of freedom and type ofmeasurement sensor (CCD, video, et.). In some systems the amera is �xed and the lightis moving while in others it is ontrariwise. The main requirement on BTF measurementsis aurate image reti�ation, i.e., aligning of texture normal with view vetor, mutualregistration of single BTF measurements and visual onstany during measurement. Thereti�ation auray strongly depends on used light/amera and robot positioning errorswhile the visual onstany depends on stability of material properties during long mea-surement time when exposed to strong light soure. Most of these problems are solved bythe reently proposed measurement setup [83℄ based on array of 151 digital still amerasmounted on hemispherial hassis above the material sample. Camera built-in ashes are



2.3: Bidiretional Texture Funtion 15used as light soures. The homomorphi transformation neessary for reti�ation of in-dividual BTF images an be preisely alulated in advane for eah amera, sine thereare not any moving parts. This approah an signi�antly derease reti�ation errors tosub-pixel values and speeds up the whole measurement proess onsiderably. The mainknown BTF measurements systems are desribed in more detail in Chapter 3.2.3.2 BTF Data RepresentationIt is possible to de�ne at least two possible ways of BTF data representation whih areommonly used in variety of BTF modelling and ompression methods as depited in Fig.2.4.Texture representation BTFTEX(i; v) (i; v) 2 B (2.8)where (i; v) is illumination and view position and B represents a set of all BTF images.The BTFTEX(i;v) desribes BTF as a set of disrete textures depending on view andillumination diretion. The number of images is produt of the numbers of all view andillumination positions (in the ase of University of Bonn BTF datasets it is 81 � 81).Apparent BRDF (ABRDF) representationBTFABRDF (r1; r2) (r1; r2) 2 I � (M �N) (2.9)where (r1; r2) is planar index in BTF image andM�N is resolution of original BTF images.In this representation the BTF an be seen as a set of apparent BRDFs (ABRDF), onefor eah planar position (r1; r2). The term apparent BRDF was �rst introdued in [120℄.The ABRDF enodes reetion of a single point given a illumination and view position.It is alled apparent beause the underlying geometry is of a muh larger sale omparedto normal BRDFs. The ABRDF, in ontrary to BRDF, does not ful�l physial reiproitysine it inludes strong shadowing and masking e�ets as well as sattering e�ets fromneighbouring parts of the surfae as depited in Fig. 2.5. Tehnially this representationan be onsidered as a set of subsequent images where eah image orresponds to onepixel in BTF. Suh an image provides information about pixel reetane value (ABRDF)when the view, illumination position represent horizontal, vertial index in ABRDF imagerespetively. The number of images in the ABRDF representation is given as the numberof pixels in original BTF images M � N . From our observations as well as from [82℄ itfollows that the image to image variane in BTFABRDF representation depends mainlyon the struture of observed material surfae produing spatial variation of reetaneproperties as well as on sattering e�ets on observed pixel neighbourhood. These e�etsare niely illustrated in Fig. 2.5. Two ABRDFs of four di�erent materials for di�erentplanar positions representing distint reetive properties are shown.InBTFABRDF representation the reetane hanges ourring between individualABRDFimages are aused by shadowing and masking e�ets. However, the speular reetanepeaks (light parts in Fig. 2.5) are plaed at the �xed positions for all ABRDF images.Whereas, in BTFTEX representation additional visual varianes between individualBTF images are presented. These varianes an be aused by measurement and registra-tion errors of individual BTF images or by di�erent material speularity and shadowing for
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Figure 2.5: ABRDFs orresponding to four di�erent BTFs (wood02, plaster, knitted wool andaluminium) measured for eah material in two di�erent planar positions (highlighted by arrows)on BTF image.



2.4: BTF Compression Methods Based on Analytial ABRDF Models 17di�erent view and illumination diretions. Moreover, due to an olusion e�et the samepixel in all BTF images does not neessarily orresponds to the same point on materialsurfae (see Fig. 2.6).2.4 BTF Compression Methods Based on Analytial ABRDFModels2.4.1 Pixel-Wise Analytial ABRDF ModelsSimilarly to other high-dimensional data the BTF exhibit loal linearity whih an beexploited for data fatorisation and subsequent use of simpler models or methods. Oneexample an be pixel-wise fatorisation of original BTF. In this fatorisation individualpixel data represents apparent BRDF and an be approximately modelled by means ofvarious BRDF models.Pixel-wise ABRDF Lafortune ModelOne of the �rst attempts to hardware aelerate BTF approximation in graphis hardwareusing analytial BRDF model was done by MAllister [75℄. This model introdues spatialBRDF (SBRDF) whih represents ABRDF of eah pixel in BTF by means of sum ofseveral reetane lobes aording to Lafortune model parametrisationBTF (r1; r2; i; v) � �d;r1;r2 + nlXk �s;r1;r2;k[!Ti Dr1;r2;k!v℄nr1;r2;k ; (2.10)where !i; !v are illumination and view vetors in loal oordinate system, D is a diagonalmatrix with model parameters. The remaining parameters �d; �s; nk represent di�use,speular albedo and speular exponent, respetively.The number of reetane lobes nl is less or equal to three. The model parameters areestimated aording to Levenberg-Marquardt non-linear �tting proess [94℄. Although theMAllister's model provides very ompat BTF representation together with one of the�rst real-time BTF rendering appliation, its use is limited to materials with more or lesssmooth struture. For oarse materials with surfae height variations this method an notapture ABRDF aurately and produes blurred results.Saled Pixel-wise ABRDF Lafortune ModelAn extension of MAllister's BTF model was presented by Daubert et al. [19℄. Theapproah was originally intended for realisti loth modelling. It onsists of two Lafortunereetane lobes saled by additional oeÆients stored in a look-up table T as followsBTF (r1; r2; i; v) � T!v;r1;r2  �d;r1;r2 + nlXk [!Ti Dr1;r2;k!v℄nr1;r2;k! ; (2.11)where !i; !v are illumination and view vetors in loal oordinate system, D is diagonalmatrix with model parameters, �d is di�use albedo and nk is speular exponent.Eah spetral hannel uses dediated lobe parameters obtained by means of non-linear�tting proess and multipliative look-up table T!v;r1;r2 whose values are result of an ad-ditional iterative proess. The look-up table stores pixel-wise olour and alpha values for



18 Chapter 2. Rough Surfae Reetane Representationeah of the original viewing diretions that model shadowing and masking e�ets of indi-vidual rough material struture elements as well as strong speular highlights and othere�ets aused by omplex material geometry. However, the look-up table requires to storesigni�antly more parameters than in MAllister's approah. This is not a big problem forBTFs of regular materials , as shown by the authors in the ase of fabris, but for generalmaterials this approah involves quite large data storage spae.2.4.2 Pixel-Wise Analytial Reetane Field ModelsAnother straightforward BTF deomposition avoiding high-dimensionality is per-view fa-torisation. This fatorisation enables separate modelling of BTF images orresponding toone given view diretion only, i.e., so alled Surfae Reetane Field Rv. This approahavoids problem aused by non-orresponding pixels in BTF images for di�erent view di-retions as it is shown in Fig. 2.6.
Figure 2.6: Pixel-wise inonsisteny for di�erent view diretions in BTF. The �rst image showsoriginal BTF image ompared with pixel-wisely non-orresponding reti�ed images for two di�erentview positions, respetively.Polynomial Texture MapsIn the approah of Malzbender et al. [72℄ the surfae reetane �eld is approximatedby means of per-pixel polynomials. Therefore the authors all this method PolynomialTexture Maps (PTM). PTM models illumination dependene of individual pixels usingfollowing pixel-wise biquadratiRv(r1; r2; i) � ao(r1; r2)u2r1 + a1(r1; r2)u2r2 + a2(r1; r2)ur1ur2 + (2.12)+a3(r1; r2)ur1 + a4(r1; r2)ur2 + a5(r1; r2) ;where ur1 ; ur2 are projetions of the normalised light vetor into the loal oordinatesystem r1; r2. The six polynomial oeÆients a0 � a5 are �tted in eah pixel by means ofsingular value deomposition (SVD) [30℄.The authors found this image-based method useful for olour pixel reonstrution in�xed-point hardware as well as for prodution of number of other e�ets suh as anisotropiand Fresnel shading models or variable depth of fous. The method an be also used forontrast enhanement or for temporal sene ompression. Moreover, a devie for surfaereetane �elds measurement is presented as well.



2.4: BTF Compression Methods Based on Analytial ABRDF Models 19This method enables very fast rendering sine its per-pixel osts for PTM evaluationdepend only on 11 multipliations and 5 additions. However, as mentioned by the au-thors, the method assumes that the modelled surfaes are either di�use or their speularontribution had been separated in the previous modelling step. This separation an bequite problemati for reetane �elds obtained as a BTF slie. For suh a reetane�eld the PTM exhibits onsiderable errors mainly for high grazing angles as shown in[78℄. For BTF rendering this method requires six parametri images to be stored foreah reetane �eld Rv and olour hannel. Sine this model is omputed in pixel-wisemanner for eah reetane �eld separately the �nal BTF rendering requires additionalinterpolation between individual view diretions.Reetane Fields Using Lafortune ModelAnother BTF ompression approah based on fatorisation into individual reetane�elds was introdued by Meseth et al. in [78℄. The approah exploits, similarly to MAl-lister's [75℄ and Daubert's [19℄ work, a pixel-wise model based on Lafortune reetanelobes of the following formRv(r1; r2; i; v) � �d;r1;r2 + �s;r1;r2;k nlXk [!Ti Dr1;r2;k℄nr1;r2;k ; (2.13)where !i represents illumination vetor in loal oordinate system, D is diagonal ma-trix with model parameters and �d; �s; nk represent di�use, speular albedo and speularexponent, respetively.Due to the expensive non-linear parameters �tting, the number of Lafortune lobes nlis pratially limited to three lobes. Unlike previously mentioned BTF models based onLafortune lobes where eah olour hannel used individual set of �tting lobes this modeluses lobes to ompute luminane values only. These luminane values are further used tosale the albedo of individual olour hannels. This arrangement redues the number ofparameters needed to be stored, but on the other hand dereases approximation auray.Similarly to other reetane �eld based BTF modelling approahes this method re-quires additional interpolation between individual view diretions during BTF renderingto suppress disturbing edges. The model an be implemented in graphis hardware andensures reasonable BTF approximation for less speular materials. However, for omplexanisotropi and highly speular materials its performane is not satisfatory [79℄.Spatial BRDF Fatorisation ModelsOne of the �rst BRDF models based on fatorisation tehniques was presented by Kautzin [52℄. This model exploits SVD for BRDF fatorisation and produes two 2D fatorsinstead of 4D BRDF. It an be exploited for pixel-wise BTF ompression aording to theformula BTF (r1; r2; i; v) � KjXk=1Pk;r1;r2(�1(!i; !v))Qk;r1;r2(�2(!i; !v)) ; (2.14)where the funtions �1; �2 are projetion funtions whih map the 4D spae determinedby illumination and view diretions to a 2D spae. The fators Pj;k and Qj;k are even-tually stored in texture maps from whih the ABRDF is easily reonstruted in graphishardware.



20 Chapter 2. Rough Surfae Reetane RepresentationThe main limitation of this method is the deomposition into two fators only. Thisrestrition has been overame by MCool [76℄ using single term ABRDF approximationaording to equation BTF (r1; r2; i; v) � JYj=1Pj;r1;r2(�j(!i; !v)) : (2.15)This approah exploits homomorphi fatorisation whih unlike the previous SVD basedmethod generates a fatorisation with only positive fators. This makes it more suitablefor hardware implementation.Even more eÆient multiple term ABRDF approximation was suggested by Suykenset al. in [110℄. This model deomposes ABRDF of eah pixel into a produt of three ormore two-dimensional positive fators using a tehnique alled hained matrix fatorisation(CMF). This tehnique uses a sequene of matrix deompositions, eah in a di�erentparametrisation, allowing to obtain the multiple fator approximation as followsBTF (r1; r2; i; v) � JYj=1 KjXk=1Pj;k;r1;r2(�j;1(!i; !v))Qj;k;r1;r2(�j;2(!i; !v)) : (2.16)This deomposition enables easier fator omputation in omparison to previously dis-ussed methods. As the authors laim, the CMF fators have lower dynami range sotheir quantisation into 8-bits is muh safer.When using any of these fatorisation approahes, an eÆient BTF representation isusually obtained by fator lustering in form of a ompat set of 2D textures. BRDF fa-torisation approahes enable BTF rendering at interative frame-rates with a ompressionratio of more than 1100 .2.4.3 Surfae Light Field ModellingAlike per-view fatorisation also per-illumination fatorisation is possible. This approahis often referred to as Surfae Light Fields (SLF). It desribes material reetane fordi�erent view positions while the illumination position is �xed. These SLFs were �rstintrodued and parametrised by Miller et al. in [81℄. Large SLFs are very ommon inhigh-quality rendering systems, however, their size is a limiting fator whih prevents fastappliations in graphial hardware. Several SLF ompression methods have been thereforintrodued as, e.g., in [9, 89℄. Sine SLF modelling is not subjet of this thesis we will donot disuss it in more detail.2.5 BTF Compression Methods based on PCAAlthough pixel-wise BRDF models disussed in the previous setion an provide satis-fatory quality of BTF approximation, they are often limited to ertain kinds of realmaterials or an not handle all omplex e�ets that appear due to using of ABRDF in-stead of assumed BRDF. These e�ets inlude sub-surfae sattering from neighbouringpixels, using not perfetly diretional light, inauraies in reti�ation or image �lter-ing proessing of original BTF data that violate Helmholtz reiproity rule and result in



2.5: BTF Compression Methods based on PCA 21asymmetri BRDF. The reetane models often fail to �t this omplex data as a resultof violating basi model assumptions.These problems hinder the use of another ategory of BTF models represented byimage statistis linear model Prinipal Component Analysis (PCA) typially omputedby means of Singular Value Deomposition (SVD). Basi information an be found in [94℄while a rigorous mathematial bakground is given in [30℄. The SVD is linear algebratehnique for solving a set of linear equations whih provides the losest possible solutionin a least-square sense. This method deomposes input matrix A (even singular one), intomatries U;VT ontaining orthonormal olumns and rows, respetively, so alled eigen-vetors (see 2.17). The non-negative diagonal matrix D ontains so alled eigen-numbersor eigen-values. The size of the eigen-values determines importane of the orrespondingeigen-vetor for original data reonstrution.A = UDVT : (2.17)This tehnique enables high data ompression sine only a relatively small numberof eigen-vetors have to be stored to ahieve reasonable approximation error. This erroris given by ratio of squared sum of preserved eigen-values to squared sum of all eigen-values. This tehnique an lead to signi�ant ompression of redundant input data and assuh stands behind many ompression algorithms appliable to BTF data as desribed infollowing setions.2.5.1 Entire BTF Spae FatorisationA PCA based BTF fatorisation approah was published by Koudelka et al. [59℄. Indi-vidual BTF sub-images are arranged into vetors forming matrix A of size 3MN3�nvni.The prinipal omponents are the eigen-vetors Ek of the symmetri matrix AAT . How-ever, the omputation requirements for larger BTF image of resolution M �N are enor-mous. Computing eigen-images (i.e., the eigen-vetor with image attributes) for non-homogeneous materials takes often several days. BTF reonstrution is stated by thefollowing equation BTF (r1; r2; i; v) � nXk=1�k(i; v)Ek(r1; r2) : (2.18)To obtain good BTF approximation results the authors suggest the number of preservedprinipal omponents to be at least to n = 150. However, any fast omputation of linearombination of suh a number of eigen-images is impossible nowadays even on high-endhardware. Diret use so using of this method for any real-time BTF rendering appliationis urrently onsidered impossible.2.5.2 Multimodal BTF Spae FatorisationThe image-based BTF ompression method by Vasilesu and Terzopoulos [114℄ is based onN-mode SVD, being an extension of the onventional unimodal matrix SVD. The methodassumes the individual BTF olour images to be ordered into vetor features forminginput BTF data tensor B 2 R(dNN)�ni�nv . N-mode SVD performs the following tensordeomposition B = Z �1 Utex �2 Ui �3 Uv ; (2.19)



22 Chapter 2. Rough Surfae Reetane Representationwhere A �n M denotes mode-n produt of tensor A, Z is ore tensor that steers theinteration between the di�erent modes, mode matrix Uv spans the view spae, its rowsenode illumination and texel invariant representation for eah of the di�erent views,mode matrix Ui spans the illumination spae, its rows enode view and texel invariantrepresentation for eah of the di�erent illumination and mode matrix Utex spans thetexel spae and are, the PCA eigen-vetors (i.e., eigen-images). The authors reommendfollowing tensor-texture representation varying with view and illumination positionsT = B �2 Ui �3 Uv : (2.20)This representation requires to store more than ten times less parameters in omparisonwith unimodal SVD [59℄ and enables eÆient BTF data ompression that an be ontrolledindependently with respet to viewing and illumination positions. The method enablesBTF rendering for both planar and non-planar surfaes. Planar version followsBTF (i; v) = T �2 iT �3 vT ; (2.21)where i and v are, respetively, view and illumination representation vetors orrespondingto desired view and illumination diretions.Although, as reported by authors, RMS error of this method is higher in omparisonwith unimodal SVD with the same number of omponents, the visual performane is sig-ni�antly better. However, this method involves high omputational times for multi-modalSVD deomposition of BTF data with higher view and illumination angular resolution,e.g., [98℄. This onerns o�ine deomposition as well as online rendering. Unfortunately,the authors have tested the method mostly on arti�ial BTF data; their tests on realUniversity Bonn BTF were not ompared with methods [98, 59℄ neither in terms of BTFompression rate ( 110 � 1100?) nor o�ine and online time omplexity. Due to the men-tioned limitations this method is not suitable for fast hardware implementations of BTFrendering. However, its ompat representation sets it as a good andidate for o�ine highquality rendering tasks.2.5.3 Reetane Field FatorisationThe huge fatorisation demands of whole BTF spae as well as the neessity of storingrelatively high number of omponents whih an not be evaluated in graphis hardwareled to development of another approah by Sattler et al. [98℄. The basi idea onsists inomputation of maximally n = 16 prinipal omponents for individual reetane �eldsinstead of the whole BTF spae. Individual images orresponding to reetane �eld Rvare used as matrix input vetors to produe 16 eigen-images Ev;k for eah Rv togetherwith orresponding weights �v;k by means of SVD. The reetane �eld reonstrutionformula is Rv(r1; r2; i) � nXk=1�v;k(i)Ev;k(r1; r2) : (2.22)The �nal BTF image is obtained by interpolation between the losest reetane �eldsRv.Although this approah enables fast BTF rendering, the size of stored weight parametersand eigen-images is still quite high. To ensure reasonable results best ompression ratioannot exeed 110 .



2.6: BTF Synthesis and Modelling Approahes 232.5.4 BTF Segmentation and Loal PCAA BTF ompression method well suited to ontemporary graphial hardware was pre-sented by M�uller et al. in [82℄. Unlike BTF fatorisation approahes employing PCA asmentioned before, this method exploits the fat that high dimensional datasets, in thisase BTF, show a loally linear behaviour. The authors propose a BTF ompressionalgorithm based on ombination of loal PCA [49℄ omputed in both BTFABRDF andBTFTEX representations and vetor quantisation. The BTF spae is iteratively dividedup to 32 lusters, eah to be represented by by means of loal PCA. The squared eigen-texture/eigen-ABRDF reonstrution error is used as distane measure in the lusteringproess.The desribed BTF fatorisation an be stated asBTF (r1; r2; i; v) � nXk=1�m(r1;r2);k(r1; r2)Em(r1;r2);k(i; v) ; (2.23)where m(r1; r2) is a luster index look-up table given by planar oordinates (r1; r2), n isnumber of preserved prinipal omponents, �k are PCA weights and Ek are either eigen-images or eigen-ABRDFs. The entire BTF reonstrution together with illumination andview interpolation is performed in graphis hardware enabling fast BTF rendering.The authors laim the BTFABRDF arrangement more appropriate in terms of om-pression ratio whih is approximately ten times higher than in the ase of BTFTEX ar-rangement. It follows from the observation that resembling material areas lead to nat-ural lustering of similar ABRDF images and lower dimension of prinipal omponentsin BTFABRDF arrangement than in BTFTEX arrangement. This method provides BTFompression ratio of about 1100 while ensuring high reonstrution quality and renderingspeed [79℄.2.6 BTF Synthesis and Modelling ApproahesBTF models desribed in the previous setion are intended mainly for eÆient BTF om-pression enabling fast hardware supported BTF rendering. Most of these approahespreserve exellent visual quality of restored BTFs, but several signi�ant disadvantagesremain inherited in this kind of models. They an not produe larger BTF images thanthose present in original BTF and they o�er only mild ompression ratio. To enable BTFsynthesis of large objets in VR by means of this kind of models it is neessary to em-ploy additional BTF enlargement methods. These methods are usually based either onsimple texture repetition with edge blending or on more or less sophistiated image tilingmethods [24, 11, 62, 103℄. Up to now there are only few image-based methods availablethat enable BTF synthesis of arbitrary resolution. Moreover, these methods are oftentoo slow to enable fast BTF rendering. Till now there is no generally appliable gener-ative BTF modelling approah available. All desribed BTF modelling methods requireto store samples of BTF either in form of image tiles, textons or in form of some kind oftheir pixel-wise parametri representation.2.6.1 BTF Synthesis from Parametri TilesThe most ommon way of arbitrary resolution BTF synthesis is employing image tilingmethods. The BTF synthesis approah based on image tiling was introdued in [124℄. This



24 Chapter 2. Rough Surfae Reetane Representationapproah involves BTF ompression based on polynomial texture maps [72℄. Estimatedresulted parametri images ontaining polynomial oeÆients are subsequently enlargedby means of Efros's image quilting algorithm [24℄. Dong and Chantler [22℄ present a surveyof several BTF synthesis approahes. The authors have tested an image based relightingmethod [21℄ based on BTF image reonstrution from several known BTF images aordingto Lambertian reetane funtion, overdetermined photometri stereo based on SVD of36 images, polynomial texture maps [72℄ and �nally PCA analysis of all BTF images. BTFsynthesis in all of these methods is aomplished again by means of tiling algorithm [24℄.2.6.2 Copy and Paste Based BTF SynthesisCopy and paste BTF synthesis is generally based on reproduing the BTF data fromoriginal BTF measurements to generate orresponding large BTF synthesis. These syn-thesis methods usually do not introdue any ompression and are often unusable for fastreal-time BTF synthesis appliations.One of the �rst BTF synthesis algorithms was developed by Liu et al.[70℄. The methodstarts with range-map estimation using modi�ed shape-from-shading algorithm basedon [66℄. The range-map is enlarged to the required size by means of aelerated non-parametri sampling [25℄. This enlarged range-map is used to generate syntheti templateimage for the given view/illumination diretion to be subsequently overed using albedomap.For eah illumination and view diretion the nearest original BTF image is taken asa referene image. The �nal stage of BTF synthesis onsists of opying image bloks fromreferene image that are similar to those in synthesised template image. Better resultsan be obtained by employing additional referene images obtained by means of weightedBTF image averaging. The authors tested the method performane on CUReT BTF data[16, 96℄. Two main drawbaks have shown up; the synthesis is too slow and the methoddoes not guarantee any reasonable data ompression.Later Liu et al. [71℄ developed another BTF model similar to [82℄. This methodworks with BTFABRDF data arrangement. The BTF synthesis on arbitrary surfaes isbased on the smallest texture elements in BTF, so alled 3D textons introdued in [68℄.To apture surfae appearane at di�erent illumination and viewing onditions the 3Dtextons are onstruted using K-means lustering of appearane vetors, i.e., the vetorsontaining responses to a set of orientation and spatial-frequeny seletive linear �ltersapplied at ertain planar position in BTF. Thus only seleted appearane vetors, thoseorresponding to textons in luster enters, are stored. This leads to onsiderable dataredution.In the following step a matrix is reated so that its rows orrespond to ABRDFs ofpreviously seleted textons. The matrix is then deomposed by means of SVD to obtain2D geometry map �i(:) together with a set (n = 5 � 40) of eigen-ABRDFs Ei. BTFreonstrution from these eigen-ABRDFs is then desribed by the following equationBTF (r1; r2; i; v) � nXk=1�k(r1; r2)Ek(i; v) : (2.24)During BTF rendering a surfae is overed by ABRDFs restored from PCA omponentsaording to previously omputed texton voabulary assigning a texton label to eah



2.7: Alternative BTF Modelling and Classi�ation Methods 25pixel-ABRDF. The authors implemented this method in graphis hardware for fast BTFrendering on arbitrary surfaes with maximal BTF ompression ratio about 1100 .Very similar BTF synthesis approah based on the 3D texton analysis was publishedin [111℄. The paper desribes 3D texton searh algorithm in more detail and suggests BTFrendering based on surfae synthesis from individual textons.Another opy and paste BTF synthesis method was published by Neubek et al. in[85℄. The authors extend standard smart opy and paste smooth texture synthesis (e.g.,[25, 24℄) to BTF synthesis. The authors introdue their own BTF measurement setupand disuss the impat of projetion plane position during reti�ation of BTF images onBTF smoothness and suggest as optimal the plain alignment that orresponds to maximalheight of material. This onsiderably inreases BTF smoothness during varying illumina-tion and view onditions. The desribed BTF synthesis method does not opy all BTFpixel values, but only the values orresponding to individual viewing position whih pro-dues novel syntheti BTF pixel reetane values. For this purpose the authors maththe original input frontal view with synthesised support view using multisale dynamiweighting sheme to obtain orret BTF pixel values. The method starts with single viewsynthesis and ontinues with sequential synthesis of other views. Although this methodprodues high quality BTF synthesis, it does not solve the issue of BTF ompression andit is relatively slow with problemati hardware implementation.2.7 Alternative BTF Modelling and Classi�ation Methods2.7.1 BTF Classi�ation Based on Image Desriptive HistogramsCula and Dana [14, 15℄ present a method for BTF representation and lassi�ation (CUReT[96℄). The authors modify the method presented in [68℄, so that instead of omputing �lterbank responses for BTF pixel during varying view and illumination diretions K-meanslustering of �lter bank responses for individual BTF images is performed separately toobtain so-alled image texton library. This representation is favourable sine it does notrequire spatial registration of individual BTF images. The distributions of texton librarylabels over individual images are subsequently approximated by the texton histogramswhih forms BTF dataset representation. PCA is employed to redue the dimensionalityof these texton histograms. The resulting representation in the eigen-spae is the refer-ene manifold indexed by illumination and view positions. When novel BTF measurement(material) is to be lassi�ed, its image texton histogram is projeted onto the universaleigen-spae and the losest manifold is found orresponding to BTF whih is the lass ofthe query.2.7.2 BTF Compression Based on Image HistogramsExploiting of individual BTF image (CUReT [96℄) histograms for purpose of estimationof material parameters, veri�ation of texture models, BTF lassi�ation, geometry esti-mation and texture rendering is introdued by van Ginneken in [113℄. Aording to thismethod BTF images orresponding to the same view position are generated by means ofa histogram mathing tehnique [31℄ using only one original BTF image, its histogramand histograms orresponding to other BTF images taken from the same view position.This tehnique enables relatively high BTF ompression sine only one image and sev-



26 Chapter 2. Rough Surfae Reetane Representationeral histograms have to be stored for satisfatory approximation of remaining BTFs formany kinds of real-world materials. The authors found this method signi�antly better inomparison with simple image brightness adjustment aording to BRDF data.2.7.3 Predition of Lambertian Rough Texture Illumination Charater-istisDiretional harateristis of rough textures was also studied by Chantler in [8℄ withonlusion that illumination during image apture an at as a diretional texture �lterand that diretional harateristis of suh a texture are not just a funtion of surfaerelief but are also a�eted by the illumination angles. The author presents a simpletexture model based on a linearised version of Lambertian law, applied to a frequenydomain representation of the surfae texture, whih suessfully predits the diretional�ltering e�et for losely Lambertian materials.2.7.4 Image Based RelightingAnother alternative approah of rough texture modelling based on Lambertian reetanefuntion was presented by Dong and Chantler in [21℄. The proposed method - Image-Based Relighting (IBR) uses a spei� linear ombination of BTF images to generate newone with di�erent illumination onditions. If Lambertian reetane law is assumed, thefollowing reetane funtion is validI(�i;�i)(x; y) = ���p os�i sin �i � q sin�i os �i + os �ipp2 + q2 + 1 (2.25)where I is the intensity of image pixel at position (x; y), � is the inident intensity tothe surfae, � is the albedo value of the Lambertian reetion, (�i; �i) are elevation andazimuthal illumination angles and (p; q) are the partial derivatives of the surfae in x andy diretion.Aording to these assumptions the interpolating formula is a linear sum of threeimages aptured in three di�erent illumination diretions (�i = 0o; 90o; 180o when �i =60o): I(�i;�i)(x; y) = �os�i sin �i2 sin 60o � sin�i sin �i2 sin 60o + os �i2 os 60o� � I(0o;60o)(x; y)+sin�i sin �isin 60o � I(90o;60o)(x; y)+� os �i2 os 60o � os�i sin �i2 sin 60o � sin�i sin �i2 sin 60o � � I(180o;60o)(x; y) (2.26)Fig. 2.7 shows the three original aptured images as well as two interpolated imagesobtained by applying the formula to eah pixel. The desribed method is useful for gener-ation of new views not inluded in a spare sampled BTF dataset, while assuming that thematerial more or less ful�ls the Lambertian law. Nevertheless, this interpolation methoddoes not solve BTF modelling or ompression problems. To ompress one reetane �eldthis method requires to store relatively high number of BTF images. Moreover, it does notsolve the BTF enlargement problem so some additional image tiling method is neessary.



2.7: Alternative BTF Modelling and Classi�ation Methods 27

a) b)Figure 2.7: Original BTF images with illumination elevation angle �i = 60o and azimuthal angles�i = 0o, �i = 90o, �i = 180o during onstant viewing position (a), generated images based onIBR formula with illumination elevation angle �i = 60o and azimuthal angles �i = 45o, �i = 135oduring onstant viewing position.



Chapter 3BTF DatabasesRepresentation of real-world materials by means of BTF is relatively new approah, how-ever, its importane onstantly inreases. Due to a omplex measurement proedure in-volving aurate data aquisition setup and long aquisition and post-proessing time thereare only several BTF databases available omprising tens of di�erent materials. Variousattributes of three main publily available BTF databases are subjet of this hapter.
3.1 Columbia-Utreht Reetane and Texture DatabaseDana et al. [16℄ aquired one of the �rst real BTF measurements for 61 di�erent naturaland man-made materials - Columbia-Utreht Reetane and Texture Database - CUReT.This database ontains materials as fabri, leather, plaster, paper, pebbles, velvet, feather,leaf, human skin and several others. On image Fig. 3.1-a is illustrated measurementsetup of CUReT BTF database. During measurement the material sample position isadjusted by robot arm and the 3-CCD olour amera moves around the material samplein seven di�erent positions (see Fig. 3.1-b) while the light position is �xed. Verties onhemisphere in Fig. 3.1-b orrespond to possible orientations of material sample surfaenormals and images are aquired for the subset of sample orientations whih are visible andilluminated. As a result eah datasets omprises of 205 BTF images for isotropi materialsamples and 410 BTF images for anisotropi material samples where extra measurementsare obtained by sample rotation by 45o or 90o. For �xed amera position there is from1 to 13 di�erent BTF images, i.e., from 2 to 26 for anisotropi samples. Size of raw BTFimages is 640 � 480 pixels with 24bits per pixel. However, exploitable size of suh BTFimages is not more than 500 � 400 pixels and used video amera had low dynami rangeand, moreover, produed visible disontinuity, interlae and moire artifats. The majordrawbak of CUReT BTF data is absene of any points of orrespondene so performingof orret pixel-wise reti�ation aording to image ontents is impossible. NeverthelessCUReT BTF samples an be useful for testing purposes where dense angles quantisationand images registration is not neessary and this BTF data are available via projet website [96℄. 28



3.2: Yale University BTF Database 29
a) b)
)Figure 3.1: (a) BTF CUReT measurement setup, (b) Camera positions aording to materialsample and illumination position, () Examples of CUReT BTF images of fabri.3.2 Yale University BTF DatabaseThe Yale university BTF database have been reated by Koudelka et al. [59℄. Thisdatabase ontains BTFs of more than ten di�erent rough materials: arpet, fur, gravel,lihen, moss, sponge, velvet and even lego brik. BTF images were aquired by a statidigital video amera (CANON XL-1) while the illumination (LED array) was moving ina robot arm with two degrees of freedom over hemisphere above the surfae of texture sam-ple. The texture sample was mounted on pan/tilt head providing two degrees of freedomin viewpoint as well. Overall measurement setup is depited in Fig. 3.2 Eah suh a BTFontains 90 possible view positions and 120 possible illumination positions whih resultsin 10 000 BTF images per sample. Individual BTF images (Fig. 3.3) an be reti�edusing marks on sample support. Obtainable resolution of reti�ed BTF measurement is192� 192 pixels. The resolution of the BTF measurements is unsatisfatory for statistialmodels training, mainly for materials with slightly non-homogeneous appearane ontain-ing lower spatial frequenies. On the other hand, an advantage of this dataset is highangular resolution in both view and illumination angles. Due to use of video amera withrelatively low resolution the measurement time is about 10 hours. The Yale UniversityBTF database is available for researh purposes upon request to author [18℄.3.3 Bonn University BTF DatabaseAn extension of the CUReT BTF measurement setup have been onstruted on Bonnuniversity [98℄ and is illustrated in Fig. 3.4. This measurement devie onsists of a robotfor material sample setting, a light soure, a digital amera mounted on a rail leadingaround the robot and a omputer for robot arm, rail and amera ontrol. The lightsoure with a HMI (Hydrargyrum Media Ar Length Iodide) bulb (Bronolor HMI F575)is equipped with the Fresnel lens to generate parallel light rays and should guaranteehomogeneous illumination of the sample and onstant emission over whole measurementperiod. The six-megapixels digital amera Kodak DCS Pro 14N is fully remote ontrolled.This measurement setup enable to measure every ombination of view and illumination
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Figure 3.2: BTF measurement setup of Yale University. Figure 3.3: Aquired BTFimages of Yale University(material: moss).diretion over the material sample. This is useful mainly for samples with anisotropireetane properties. Aquired raw images are of size 4300 � 3000 pixels in 12-bit RGBformat. The measurement time for one material using desribed setup is about 14 hoursand most of it takes data transfer from the amera to the omputer.Sample holder ontains features for easy raw image reti�ation (Fig. 3.6-a). The re-ti�ation proedure onsists of two steps. The �rst is detetion of sample holder orners asintersetions of four main outlines (Fig. 3.6-b) in Hough spae illustrated in Fig. 3.6-. Inseond step is omputed a homomorpi projetion matrix from four points orrespondingto outlines intersetion of four points orresponding to orners positions of reti�ed im-age. By means of this matrix the raw BTF image is transformed into a reti�ed head-onposition (�v = 0o; �v = 00) as it is shown in Fig. 3.6-d. Reti�ation error is less than�ve pixels. The size of material sample is 10 � 10 m2 and orresponding reti�ed BTFimages have resolution of 256 � 256 pixels. The Bonn university BTF datasets ontains6561 images per texture sample whih orresponds to all ombinations of 81 view and 81illumination diretions. Eah BTF dataset takes up about 1.2GB. A subset of these BTFdatasets are publily available via projet web page [17℄.In the framework of EU projet IST-2001-34744 RealReet we were provided witheven more aurate Bonn University BTF measurements with a maximal resolution of800� 800 pixels. Thanks to improved images post-proessing and reti�ation algorithmsthe reti�ation error of these measurements is less than three pixels, while all otherparameters and the measurement setup remains unhanged.At this point we have to mention that for all experiments with BTF data in this thesisthe extended Bonn university BTF datasets were used of size 800� 800 pixels introduing81 di�erent view and illumination diretions.To improve orrespondene of the individual BTF images as well as a speed up whole
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Figure 3.4: BTF measurement setup of Bonn University. Figure 3.5: Aquired BTF im-ages of Bonn University (material:orduroy).
a) b) ) θ

ρ d)Figure 3.6: BTF image reti�ation: (a) measured image, (b) binary image for Hough transform,() Hough transform aumulator with four main lines orresponding to sample holder edges, (d)�nal reti�ed image.the BTF measurement proedure Bonn University proposes [83℄ a new BTF measurementdevie based on array of 151 digital still ameras mounted on the hemispherial hassisabove the material sample. As light soures will be used the built-in ashes in these am-eras. Angular resolution of this planned measurement setup depends only on a number ofameras. The biggest advantage of this system is that it does not involve any moving parts,so the aquired images an be �nally reti�ed at sub-pixel preision. System will enablefast measurement as individual ameras an take images subsequently and do not needto wait on a previous image data transfer. The time onsuming post-proessing shouldbe muh faster and more aurate as the individual images are reti�ed and orreted a-ording to exatly known parameters and positions of the individual ameras. The spatialresolution of this setup would be up to 280DPI resulting to reti�ed BTF textures of size1024 � 1024 pixels. The measurement time is expeted to be less than one hour.



32 Chapter 3. BTF Databases3.4 Comparison of BTF Databases' ParametersThe following table summarises properties of individual BTF databases.BTF databaseparameter CUReT Yale Bonn Bonn ext.Number of materials 61 �17 5 �12Raw BTF images resolution [pixels℄ 640�480 480�360 3032�2008 3032�2008Reti�ed BTF images resolution [pix-els℄ 500�400 192�192 256�256 800�800Number of view positions 7 90 81 81Number of illumination positions max. 50 120 81 81Number of BTF images / material 205 10 000 6561 6561Material sample size [m℄ 10�12 < 102 10�10 10�10Average size of reti�ed BTF dataset inPNG format �100MB �700MB �700MB �5GBReti�ation auray [pixels℄ { ? �5 �2Camera type [Video / Still℄ V V S SMovement of [Sample / Camera /Light℄ during measurement S,C S,L S,C S,CRaw data publily available yes yes no noReti�ed data publily available no yes yes no



Chapter 4BTF RenderingThe BTF is relatively new approah for material reetane properties desription whihis only urrently possible due to reent progress in omputer tehnology. However, eventhe most sophistiated graphis hardware have limited apability of fast raw BTF datarendering therefore employing of BTF modelling methods is inevitable. Additionally thereare neither any standards for BTF rendering and modelling nor BTF rendering supportavailable implemented in widely used 3D rendering software pakages. This is aused beboth huge dimensionality of BTF data and the prinipal dissimilarity of individual BTFmodelling methods so the BTF rendering is usually inevitably tailored to a needs of theseindividual methods. Therefore in the sope of this thesis we have implemented a BTFrendering sheme, for proposed BTF modelling methods, based on the OpenGL libraryfor one point-light soure.During implementation several tehnial problems ourred and this setion desribesthe most important of them as well as their proposed solution: the BTF mapping ona 3D objet surfae, the BTF interpolation for given view and illumination diretions andsurfae height simulation tehniques.4.1 BTF Mapping on a 3D ObjetA texture mapping lays the texture onto an objet in a VR sene. During this proess animage is applied to a polygon (or some other surfae faet) of an objet shape surfae byassigning texture oordinates to the polygon's verties. These oordinates index a textureimage, and are interpolated aross the polygon to determine, at eah of the polygon'spixels, a texture image value. The result is that some portion of the texture image ismapped onto the polygon when the polygon is viewed on the sreen.Additionally to geometrial mapping in the ase of BTF (assuming homogeneous illu-mination for eah polygon) we have to ompute the two pairs of polar angles (�i; �i) and(�v; �v) for eah polygon in texture oordinate system aording to atual illumination andamera diretion as is illustrated in Fig. 4.1. These angles are neessary for identi�ationwhih BTF image from the whole BTF dataset should be synthesised and subsequentlymapped on the polygon. For this the 3D world oordinates of polygon verties v1;v2;v3are known as well as their orresponding 2D texture oordinates t1; t2; t3.33
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cfFigure 4.1: The loal oordinate system of objet surfae polygon spei�ed by angles �i; �i; �v ; �v .As a �rst step the polygon normal vetor is omputed using equation (4.1).n = (v1 � v2)� (v3 � v2)knk : (4.1)The enter of the polygon (triangle) isf = v1 + v2 + v33 : (4.2)Vetors pointing from the polygon enter f to the illumination and amera positions inworld oordinates iw;vw are i = iw � fkik v = vw � fkvk : (4.3)The elevation angles �v and �i are then�i = aros n iknk kik �v = aros n vknk kvk : (4.4)To determine azimuthal angles �i and �v we need to ompute the projetion of illuminationand view vetors i;v to a polygon plane (4.5):ip = n� (n� i) vp = n� (n� v) (4.5)and to obtain vetor x giving x-axis of a loal texture oordinate system. Vetor x isprojetion of a 2D vetor (1; 0) to 3D spae. Our task is to ompute the 3� 3 projetionmatrixM having set of three 2D texture oordinates (tu1; tv1); (tu2; tv2); (tu3; tv3) and or-responding 3D verties oordinates (vx1; vy1; vz1); (vx2; vy2; vz2); (vx3; vy3; vz3) for a givenpolygon aording toM264 tutv1 375 = 264 a1 a2 b1a3 a4 b2a5 a6 b3 375264 tutv1 375 = 264 vxvyvz 375 : (4.6)Parameters of the matrix M an be determined as the Gauss elimination [94℄ of matrixequation:AMT = B , i.e., 264 tu1 tv1 1tu2 tv2 1tu3 tv3 1 375264 a1 a3 a5a2 a4 a6b1 b2 b3 375 = 264 vx1 vy1 vz1vx2 vy2 vz2vx3 vy3 vz3 375 (4.7)



4.1: BTF Mapping on a 3D Objet 35where M is the wanted solution. In the ase that we need only projetion of vetorx2D = (1; 0) { it means only di�erene of 3D oordinates of points A(0,0), B(1,0) usingthe equation (4.6) with the resultx = 264 xxxyxz 375 = 264 xB � xAyB � yAzB � zA 375 = 264 1 � a1 + b1 � b11 � a3 + b2 � b21 � a5 + b3 � b3 375 = 264 a1a3a5 375 : (4.8)Thus we see that only three parameters have to be omputed, whih an be done analyt-ially with the following resultxx = a1 = vx3(tv2�tv1)�vx2(tv3�tv1)�vx1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3)xy = a3 = vy3(tv2�tv1)�vy2(tv3�tv1)�vy1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3)xz = a5 = vz3(tv2�tv1)�vz2(tv3�tv1)�vz1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3) : (4.9)The azimuthal angles are then omputed as angles between the vetor x and projetionsip;vp of illumination and view vetors onto the polygon. To obtain information of om-puted angles greater then 180o we need to introdue auxiliary vetor y = jn � xj. Theazimuthal angles �i and �v are omputed as follows�i = 8><>: 2� � aros ip xkipk kxk if aros ip ykipk kyk > �2aros ip xkipk kxk else�v = ( 2� � aros vp xkvpk kxk if aros vp ykvpk kyk > �2aros vp xkvpk kxk else : (4.10)All this omputation an be done in advane and stored in a ube-map texture wherea vetor to illumination/amera is used as an index in the 4-dimensional images overingube sides storing the already preomputed values. This enables to onsiderably speed upthe whole proess of BTF mapping. For more details see [101℄.4.1.1 Additional Texture Mapping TasksConstrained Texture SizeThe texture is normally stored as a sampled array of onstrained size, so a large ontinuousimage must �rst be reonstruted from the samples/tiles. The repeatable tiles publishedin [103℄ were omputed from the original (see Setion 8.3.1) BTF image using the fastand adjustable sub-optimal path searh algorithm for �nding the minimum error bound-aries between the overlapping images. Another image tiling approahes are mentioned in[24, 11, 62℄. Alternative solution of BTF enlargement using probabilisti texture modelsapproximating real measurements is proposed in Chapter 7. The presented probabilistimodels enable to produe the BTF images of an arbitrary size. The tiling approah wasused to obtain textured objets for omparison with methods developed in the thesis.AliasingThe texture image must be warped to math any distortion (aused, perhaps, by perspe-tive) in the projeted objet being displayed. Then this warped image is �ltered to remove



36 Chapter 4. BTF Renderinghigh-frequeny omponents that would lead to aliasing in the �nal step. This problem isusually solved using mip mapping approah [119, 101℄ whih stores pyramid of images ofthe same texture with subsequently dereasing resolution. During the texture mappinga ertain texture image from the pyramid is taken aording to distane of observer fromthe objet polygon being mapped. This suppress aliasing artifats and save omputationtime too beause there is not neessary to have the same level of detail mapped on bothlosed and distant polygons of the objet.Due to time and memory omplexity of BTF synthesis and mapping we do not dealwith mip mapping in the sope of this thesis at all. Thus all the polygons of renderedobjets are overed with BTF with the same level of details.However, all of the mathematial texture models presented in Chapter 7 uses theGaussian-Laplaian pyramid whose individual image levels an be stored and used as mipmap images.4.2 BTF InterpolationFor purpose of the BTF orret visualisation on objets in VR sene, there is neessaryto perform interpolation between individual view and illumination diretions with respetto original quantisation step of the measured BTF. In the ase that only the losest BTFimage is hosen for texture mapping on atual polygon there beame visible seams ofdi�erent olour / brightness on objet surfae. These artifats an be suppressed usinginterpolation between three or more view / illumination position from BTF databasewhih are losest to atual polygon's view and illumination diretions. Next problem isomputation of optimal weights of these losest view/illumination diretions. In omputergraphis are for this aim ommonly used baryentri oordinates whih were derived byM�obius in 1827 [13, 26℄. Using this tehnique the weights of three losest triangle verties(v1;v2;v3) (view/illumination positions) orresponding to point p are omputed as ratioof masses of partiular sub-triangle and whole triangle. The relative magnitude of theoordinates (weights) orresponds to area ratios in triangle depited in Fig. 4.2.
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Figure 4.2: The baryentri oordinates in triangle.Then baryentri weights are then omputed asw1 = 4(p;v2;v3)4(v1;v2;v3) w2 = 4(p;v1;v3)4(v1;v2;v3) w3 = 4(p;v1;v2)4(v1;v2;v3) (4.11)where 4(a; b; ) means area of triangle a; b; . The point p is interpolated from losestthree points using equation p = w1v1 +w2v2 + w3v3 (4.12)



4.3: Surfae Height Simulation 37while following ondition is ful�lledw1 + w2 + w3 = 1 : (4.13)From this is obvious that following sheme an be simply utilised for BTF interpolationif the three losest measurements are known. These measurements an be obtained asthree losest vetors to atual amera/light positions. Now having these three losestview/illumination positions the baryentri weights (wi; wv) are omputed for the losestview and illumination diretions. To determine the BTF image orresponding to thesediretions there is neessary to speify both view and illumination diretions at a time.By permutation of three losest view and illumination positions we obtain nine pairs ofview and illumination position when eah of them speify one of BTF measurement. Thetexture �nally mapped on eah polygon is then linear ombination of these nine BTFimages while the �nal weight fators for eah suh a image are obtained usingwi;v = wiwv : (4.14)Implementation of baryentri oordinates is quite straightforward when assuming thateah triangle in 3D an be represented using two vetors and the area of this triangle isproportional to vetor norm of a ross-produt of these two vetors. So the baryentriweights from equation (4.11) are �nally omputed asw1 = k(v2 � p)� (v3 � v2)kk(v2 � v1)� (v3 � v2)kw2 = k(v3 � p)� (v1 � v3)kk(v2 � v1)� (v3 � v2)kw3 = k(v1 � p)� (v2 � v1)kk(v2 � v1)� (v3 � v2)k : (4.15)The baryentri oordinates have the following interesting properties:� If w1; w2 and w3 are all greater than zero, p is stritly inside the triangle.� If wi = 0 and the other two oordinates are positive, p lies on the edge opposite vi.� If wi = 0 and wj = 0, p lies on vk.� If wi < 0, p lies outside the edge opposite vi.There is a lot of researh work, mainly in omputer graphis, onerning baryentrioordinates. The artile [80℄ desribes generalisation of baryentri oordinates to anyirregular polygon (not only triangle).The same interpolation sheme an be exploited also for luster interpolation withinBTF model introdued in Chapter 7. In this ase there are not used original BTF imagesfor interpolation but synthesised subspae images instead of them spei�ed by means ofa luster index �le.4.3 Surfae Height SimulationRough material surfaes an be in ertain onditions eÆiently approximated by meansof methods exploiting surfae height information. Two main approahes of rough surfae



38 Chapter 4. BTF Renderingrepresentation based on height information were developed in omputer graphis. The�rst one is relative omputationally heap method proposed by Blinn in [7℄ alled bumpmapping. The seond one, displaement mapping is more omputationally demandingmethod modelling texture surfae by means of diret move of surfae verties aording tothe range-map. Both of these methods are supported by ontemporary graphis hardwareand thus their fast implementations and di�erent modi�ations are available [122, 118, 56,90, 92℄.4.3.1 Bump MappingBump mapping [7℄ is a normal-perturbation rendering tehnique for simulating lightinge�ets aused by patterned irregularities on otherwise loally smooth surfaes. This teh-nique adds more realism to syntheti images without adding a lot of geometry. Bumpmapping adds per-pixel surfae relief shading and inreasing the apparent omplexity ofthe surfae, however its real geometry remains unhanged as is illustrated in Fig. 4.3 [77℄.
Surface normals Range−map

s

Perturbed surface normalsFigure 4.3: Priniple of bump mapping.The olour of a surfae is determined by the angle between the normal vetor N ofthat surfae and the light vetor L. On a at surfae the normal vetor N is the sameeverywhere on that surfae, so the olour of that surfae will be the same everywhere,however, if the normal vetor is perturbed at various points on that surfae, it would yieldareas that are darker or lighter, thereby reating the pereption that parts of the surfaeare raised or lowered.The information about normals perturbation an be stored in a texture map so alledrange-map or bump-map whih is an array of values that represent an objet's heightvariations. The material range-map an be measured and estimated by means of varietymethods and most ommon of them are desribed in Chapter 5.The normals perturbation an be performed by means of the �rst derivative of therange-map values whih an be eÆiently found by the following proess (see 1D examplein Fig. 4.4):1. Render the range-map image as a texture (A).2. Shift the texture oordinates at the verties towards the light (B).3. Re-render the range-map as a texture, subtrating from the �rst image (A-B).In order to perform aurate texture shift, the light soure diretion L must be rotatedinto a tangent spae. The tangent spae has three perpendiular axes, T, B and N. T,
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sFigure 4.5: The tangent spae de�ned on polyg-onal 3D surfae.the tangent vetor, is parallel to the diretion of inreasing texture oordinates s or t ona parametri surfae (see Fig. 4.5). N, the normal vetor, is perpendiular to the loalsurfae. B, the bi-normal, is perpendiular to both N and T, and like T, also lies onthe surfae. They an be thought of as forming a oordinate system that is attahed tothe surfae, keeping the T and B vetors pointing along the tangent of the surfae, andpointing away. If the surfae is urved, the tangent spae orientation hanges at everypoint on the surfae.In order to reate a tangent spae for a surfae, it must be mapped parametrially. Butsine this tehnique requires applying a 2D texture map to the surfae, the objet mustalready be parametrially mapped in texture oordinates s and t. The only requirementfor well working bump mapping is onsistent parametri mapping on the polygon.A vetor pointing to the light soure must be rotated into tangent spae at eah vertexof the polygon. To �nd the tangent spae vetors at a vertex, use the vertex normal forN, �nd the tangent axis by �nding the vetor diretion of inreasing s in the objet'soordinate system. Find B by omputing the ross-produt of N and T. The normalisedvalues of these vetors an be used to reate a rotation matrix:R = 26664 Tx Ty Tz 0Bx By Bz 0Nx Ny Nz 00 0 0 1 37775 (4.16)The matrix (4.16) rotates the T vetor, de�ned in objet spae, into the x axis of tangentspae, the B vetor into the y axis, and the normal vetor N into the z axis. It rotatesa vetor from objet spae into tangent spae. For all non-planar surfaes, this matrixwill di�er at eah vertex of the polygon.Now we an apply this matrix to the light diretion vetor L, transforming it intotangent spae at eah vertex. Then the transformed x and y omponents of the lightvetor are used to shift the texture oordinates at the vertex. The overall desription ofthree pass bump mapping algorithm is given in Alg. 1.Example of bump mapping for leather02 smooth texture on sphere with additionaldi�use lighting is depited in Fig. 4.6-left.Although this tehnique approximates the surfae eÆiently, there are following limi-tations to its auray [77℄:



40 Chapter 4. BTF RenderingAlgorithm 1: Bump mapping algorithm1. Render the polygon with the range-map textured on it (pass 1 ).2. Find N, T and B at eah vertex aording to Fig. 4.5.3. Use these vetors to reate a rotation matrix R (4.16).4. Use the matrix R to rotate the light vetor into tangent spae (L0 = RL).5. Use the rotated L0x and L0y omponents of L0 to shift the s and t texture oordinatesat eah polygon vertex in diretion of the light.6. Re-render the textured polygon with the range-map using the shifted texture oor-dinates (pass 2 ). See 1D example in Fig. 4.4.7. Subtrat the seond image (pass 2 ) from the �rst (pass 1 ).8. Render the polygon with original olour texture (i.e., smooth texture or BTF syn-thesised and interpolated aording to illumination and view position) and add it topreviously \bumped" polygon (pass 3 ).
� Bump Map Sampling - the range-map is not ontinuous, but is sampled intothe texture. The resolution of the texture a�ets how faithfully the bump map isrepresented. Inreasing the size of the bump map texture an improve the samplingof the high frequeny height omponents.� Texture Resolution - the shifting and subtration steps produe the diretionalderivative. Sine this is a forward di�erening tehnique, the highest frequenyomponent of the bump map inreases as the shift is made smaller. As the shift ismade smaller, more demands are made on the texture oordinate preision. The shiftan beome smaller than the texture �ltering implementation an handle, leading tonoise and aliasing e�ets.� Surfae Curvature - the tangent oordinate axes are di�erent at eah point ona urved surfae. This tehnique approximates this by �nding the tangent spaetransformation at eah vertex. Texture mapping interpolates the di�erent shift val-ues from eah vertex aross the polygon. For polygons with very di�erent vertexnormals, this approximation an break down. A solution would be to subdivide thepolygons until their vertex normals are parallel to within some error limit.� Maximum Bump Map Slope - the range-map normals used in this tehnique aregood approximations if the bump map slope is small. If there are steep tangentsin the range-map, the assumption that the perturbed normal is length one beomesinaurate, and the highlights appear too bright. This an be orreted by reatinga fourth pass, using a modulating texture derived from the original bump-map.



4.3: Surfae Height Simulation 41Many of these problems are avoided when using displaement mapping approah instead.Due to its simpliity we have used variant of bump mapping alled parallax mapping[118℄ to introdue regular maro-struture to proposed probabilisti BTF model in Chap-ter 7. This approah approximates orret appearane of uneven surfaes by modifyingthe texture oordinate for eah pixel and thus does not require to draw any additionalpolygons and an be implemented diretly in graphis hardware.

Figure 4.6: Bump Mapping (left) vs. Displaement Mapping (right) for leather02 material(smooth texture with di�use lighting).4.3.2 Displaement MappingDisplaement mapping [115℄ is a powerful tehnique that allows the range-map to ma-nipulate the position of rendered objet faes. Unlike bump mapping, where the normalsare perturbed to give the pereption of a bump, this reates real surfae relief. They astshadows, olude other objets, and do everything real geometry an do. The displaementmapping is in omparison with bumpmapping signi�antly more omputationally demand-ing sine it requires to tessellate original polygon mesh into even �ner one. Displaementmapping works for all 3D objet types. However, beause of need for �ne render-faes,not all objets are equally well suited for displaement mapping. Fig. 4.6-right showsexample of displaement mapping for leather02 material on sphere with additional di�uselighting ompared with orresponding bump mapping result. Note the di�erene mainlynear an objet's silhouette, where the bump mapping fails to perform realisti olusions.The main advantage of this method is no limitation on bump height so it an by used forapproximation of variety of real-world materials, e.g., fur as shown in [54℄.To sum up, the displaement mapping tehnique provides better results than the bumpmapping alternative espeially at ontours of textured objets, where the bump mappedtextures remains at while displaement mapping preserve material relief orretly (seeFig. 4.6). On the other hand the displaement bump mapping is not so omputationallyexpensive sine this method doesn't require further tessellation of eah polygon of thetextured objet.



Chapter 5Range Data AquisitionFor the sake of rough textures modelling as is often the ase of BTF, the original ma-terial struture should be preserved as reliably as possible. One way of material surfaerepresentation is surfae height �eld so alled range-map. In this thesis we have foundthe range-map useful for enhaning the quality of probabilisti BTF model introdued inChapter 7. Stohasti nature of the proposed models has diÆulties with modelling oftextures onsisting of regular patterns. So the regularity is introdued into these modelsby means of surfae height information stored in the range-map. Therefore this haptersummarises and disusses di�erent approahes for material surfae height aquisition andtheir suitability for BTF height aquisition.The range-map is usually stored in a form of monospetral image whose intensity inindividual pixels orresponds to relative height of observed surfae. In our ase the lighterthe pixel is, the loser the orresponding surfae is to the amera. The range-map enablesus to produe 3D representation of rough texture from single texture image using renderingtehniques whih are widely supported by today's graphis hardware.There are several options how to obtain the range-map. The easiest but ostly isdiret measurement using a range-sanner. Muh heaper but omputationally more de-manding alternative is using of analytial methods for range-map estimation. There arenumerous methods for range-map estimation and their modi�ations. The range-mapan be estimated by means of shape from stereo [58℄, shape from shading (SFS) methods[44, 66, 126, 29℄, spei� ase of SFS - photometri stereo [121, 104℄ or other alternativemethods [69℄. For purposes of this thesis we have implemented and tested the two of themost know and widely used approahes:� Shape from shading� Photometri stereo{ using loal integration of surfae normals{ using global integration of surfae normals5.1 Range-Map MeasurementRange-sanners are widely used for obtaining depth information of environment for robotnavigation, shape reonstrution or other image proessing tasks and an be basially42



5.1: Range-Map Measurement 43
a) b) ) d)Figure 5.1: Range-map estimation results of orduroy material (a). The following �gures il-lustrate: (b) diret measurement using FM beat sensor, () shape from shading estimate, (d)photometri stereo estimate.divided into following two main ategories.5.1.1 Strutured Light Range SensorsThe �rst ategory is based on a strutured light sanner whih uses two optial paths,one for a CCD sensor and one for the strutured light projeted on measured objet andomputes depth via triangulation. Light soure an be laser beam or light pattern. Usingmultiple ameras an improve measurement auray and exploit two dimensional lightpattern to speed up measurement. The main drawbak of this triangulation tehnique islow aquisition speed and missing data at parts of the sene visible to the amera but notvisible to light projetor. Moreover, for relatively at and smoothly strutured objetssuh as rough textures for instane, the method is not aurate enough. An additionaldiÆulties appear also due to speularity of measured material.5.1.2 Time of Flight Range SensorsThe seond group of range sensors involves a signal transmitter, a reeiver and eletronisfor measuring the time of ight of the signal during its round trip from the range sensorto the surfae of interest. There are three main lasses of time of ight sensors:� Pulse time delay sensor emits intense pulses of light or ultrasound and the distanemeasurement is obtained as the amount of time the pulse takes to reah the targetand return to the sensor.� AM phase shift sensor measures the phase di�erene between the beam emitted byan amplitude-modulated laser and the reeted beam, a quantity proportional tothe time of the ight. This sensor su�ers from inherent ambiguities sine depthdi�erenes orresponding to phase shifts that are multiples of 2� annot be resolved.� FM beat sensor measures the frequeny shift (or beat frequeny) between a frequeny-modulated laser beam and its reetion whih is proportional to the round trip ighttime. The range-map of orduroy rough material (Fig. 5.1-a) obtained using FMbeat sensor is shown in Fig. 5.1-b.All these sensors have problems when imaging speular surfaes and an be relativelyslow due to long integration time at the reeiver. Compared to strutured light basedsystems, time of ight sensors o�er greater operating range during variable light onditions.



44 Chapter 5. Range Data Aquisition5.2 Range-Map EstimationDiret range-map measurement devie ould not be always available or suh a measurementould not be in priniple possible. In suh a situation the analytial range-map estimationmethods desribed in this setion an be onvenient.5.2.1 Shape from StereoSurfae height an be restored from at least two images taken from di�erent positions. Theproblem redues mainly to dense orrespondene mathing. Approahes to the orrespon-dene problem an be broadly lassi�ed into two ategories: the intensity-based mathingand the feature-based mathing tehniques. In the �rst ategory, the mathing proess isapplied diretly to the intensity pro�les of the two images, while in the seond, featuresare �rst extrated from the images and the mathing proess is applied to the features.Intensity-Based Stereo MathingThe intensity-based stereo mathing employs epipolar geometry whih redues the searhfor orrespondenes from two-dimensions (the entire image) to one-dimension. This ispossible if we assume that an epipolar lines oinide with the horizontal sanlines if theameras are parallel so the orresponding points in both images must therefore lie on thesame horizontal sanline. From the orresponding row of the image pair reveals that thetwo intensity pro�les di�er only by a horizontal shift and a loal foreshortening. Theadvantage of this intensity pro�le mathing is that as an output is a dense disparity mapand, onsequently a dense range-map. Unfortunately, like all onstrained optimisationproblems, whether the system would onverge to the global minimum is still an openproblem. An alternative approah in intensity-based stereo mathing, ommonly known asthe window-based method, only mathes those regions in the images that are \interesting"[58℄.Feature-Based Stereo MathingIn the feature-based approah, the image pair is �rst preproessed by an operator so as toextrat the features that are stable under the hange of viewpoint, the mathing proessis then applied to the attributes assoiated with the deteted features. Edge elements,orners, line segments, and urve segments are features that are robust against the hangeof perspetive, and they have been widely used in stereo vision. Edge elements and ornersare easy to detet, but may su�er from olusion; line and urve segments require extraomputation time, but are more robust against olusion.Stereo mathing proess is a very diÆult searh proedure. In order to minimum falsemathes, some mathing onstraints must be imposed. Several mathing onstrains wereused in the past as for instane similarity, uniqueness, ontinuity, ordering and epipolaronstrain [73℄.When the mathing is �nished the essential matrix of both ameras an be omputedbased on orrespondene between two images. From this essential matrix it an be derivedthe translation and rotation between the both amera positions. Finally aording theseinformation about mutual amera position and orientation the range-map reonstrution



5.2: Range-Map Estimation 45an be performed up to a sale fator. Note that the amera is assumed to be alibratedso that its intrinsi parameters are known. For more see [104℄.5.2.2 Shape from ShadingShape-from-shading (SFS) is problem of determining the shape of a smooth surfae givena single image of that surfae illuminated from know diretion. The pioneer work in this�eld has been done by Horn [44℄. The SFS task an be regarded as alulating the setof partial derivatives (~zx; ~zy) orresponding to surfae z(x; y) assuming as a input singleintensity image illuminated under light diretion �. The problem redues to solving theimage irradiane equation E(x; y) = �R(zx; zy; !i) (5.1)where E is the intensity value of the pixel at position x; y, � is albedo of the objet surfaeand R is Lambertian reetane map (5.2) that maps surfae gradients zx = �z(x;y)�x andzy = �z(x;y)�y to an intensity value as followsR(zx; zy; �) = uxzx + uyzy + uzqu2x + u2y + u2zq1 + z2x + z2y ; (5.2)where !i = (ux; uy; uz) is vetor to illumination soure in sample oordinate system.The values (zx; zy;�1) represents normal vetor of surfae in observed objet loation.Unfortunately the equation (5.1) is underonstrained. To overome this underonstrainednature of Lambertian SFS several onstraints were proposed (see SFS survey in [126℄).One of them has been introdued by Frankot and Chellappa in [29℄. This integrabilityonstrain transforms estimated slopes (ẑx; ẑy) to nearest integrable slopes (~zx; ~zy) wherefollowing integrability equation is valid��y ~zx = ��x ~zy : (5.3)A possibly non-integrable estimate of surfae slopes is represented by a �nite set of basisfuntions and integrability is enfored by omputing the orthogonal projetion onto a ve-tor subspae spanning the set of integrable slopes. This projetion maps losed onvex setsinto onvex sets in eah iteration step of SFS algorithm (Alg. 2) while following distanemeasure is minimiseddf(~zx; ẑx); (~zy; ẑy)g = Z Z j~zx � ẑxj2 + j~zy � ẑyj2dxdy : (5.4)At the beginning of eah pass of the algorithm the previous slopes are smoothed byapproximation of Laplaian with the enter pixel left out aording to^̂zx(x; y) = 15[~zx(x; y + 1) + ~zx(x; y � 1) + ~zx(x+ 1; y) + ~zx(x� 1; y)℄ + (5.5)+ 120 [~zx(x� 1; y � 1) + ~zx(x� 1; y + 1) + ~zx(x+ 1; y + 1) + ~zx(x+ 1; y � 1)℄and similarly for ^̂zy.



46 Chapter 5. Range Data AquisitionThe following step represents �nite di�erene approximation whih generates a newset of raw slope estimates during eah iteration" ẑx(x; y)ẑy(x; y) # = " ^̂zx(x; y)^̂zy(x; y) #+ 1�(I(x; y) �R(^̂zx; ^̂zy)) " Rx(^̂zx; ^̂zy)Ry(^̂zx; ^̂zy) # ; (5.6)where Rx = �R�^̂zx and Ry = �R�^̂zy are partial derivations of reetane funtion in (5.2) andI(x; y) is intensity in image at loation (x; y) and � is regularisation parameter whihinuenes onvergene speed of the whole iterative algorithm.Surfae slopes are represented using integrable basis funtions in Fourier domainĈx(u; v) = 12� Z +1�1 Z +1�1 ẑx(x; y)) � ej(ux+vy)dxdy ; (5.7)Ĉy(u; v) = 12� Z +1�1 Z +1�1 ẑy(x; y)) � ej(ux+vy)dxdy :And �nally in the last step the raw slopes estimates are projeted onto the nearest inte-grable solution using surfae slopes representation in Fourier domain as follows:~C(u; v) = �j2� uN Ĉx(u; v) + vN Ĉy(u; v)uN 2 + vN 2 ; (5.8)~Cx(u; v) = uN ~C(u; v) ;~Cy(u; v) = vN ~C(u; v) ;where Ĉ is Fourier spetrum orresponding to surfae height ẑ,u is frequeny orresponding to width of the image 1 : : : N ,v is frequeny orresponding to height of the image 1 : : : N .The raw slope estimates whih ful�l integrability ondition are obtained as the inverseFourier transformation of slopes represented in Fourier domain:~zx(x; y) = 12� Z +1�1 Z +1�1 ~Cx(u; v) � e�j(ux+vx)dudv ; (5.9)~zy(x; y) = 12� Z +1�1 Z +1�1 ~Cy(u; v) � e�j(ux+vx)dudv :The surfae height is obtained as a byprodut of integrating surfae slope estimatesz(x; y) = 12� Z +1�1 Z +1�1 C(u; v) � e�j(ux+vy)dudv : (5.10)Result of this algorithm applied on texture with omplex surfae illuminated by lightsoure with tilt � = 0o and slant � = 60o is illustrated in Fig. 5.2-b and Fig. 5.1-.Another example of shape from shading algorithm performane is given in Fig. 5.3. Therange-maps of three leather materials (right resp.) were estimated from single textureimages (left resp.) for roughly estimated position of illumination soure.



5.2: Range-Map Estimation 47Algorithm 2: Shape from Shading Algorithm (Frankot,Chellappa) [29℄1. FOR all (x; y) 2 IN�N set slopes ~zx; ~zy to zero2. WHILE (df(~zx; ẑx); (~zy ; ẑy)g < threshold)(a) FOR all (x; y) 2 IN�N ompute smoothing by (5.5)(b) FOR all (x; y) 2 IN�N ompute new slopes (5.6)() FOR all (x; y) 2 IN�N represent slopes using integrable basis funtions inFourier domain, i.e. zx(x; y)! Cx(u; v) and zy(x; y)! Cy(u; v) (5.7)(d) FOR all (x; y) 2 IN�N projet the raw slope estimates onto the nearest inte-grable solution using (5.8) in Fourier oeÆients spae(e) FOR all (x; y) 2 IN�N onvert slopes from Fourier domain into raw form, i.e.Cx(u; v)! zx(x; y) and Cy(u; v)! zy(x; y) (5.9)3. FOR all (x; y) 2 IN�N ompute height data z(x; y) from last Fourier oeÆientsC(u; v) (5.10) by inverse DFT .4. FOR all (x; y) 2 IN�N normalise height data

a) b)Figure 5.2: Result of SFS algorithm [29℄: (a) original image (b) its range-map (� = 500, 28iterations)5.2.3 Photometri StereoThe idea of photometri stereo is based on a hange illumination position between sues-sive views, while holding the viewing diretion onstant. Woodham in [121℄ demonstratedthat these intensity measurements from multiple images provide suÆient onstraint todetermine surfae orientation loally. Thus assumptions of photometri stereo are knownreetane funtion of observed material and existene of three or more images obtainedfrom the same viewing position during known illumination position hange. This methodenables to ompute normal vetor in eah image pixel [104℄. The desired height data



48 Chapter 5. Range Data Aquisition
Figure 5.3: Range maps (left resp.) estimated from one image (right resp.) using shape fromshading tehnique for white leather, ushion leather and snake leather from DaimlerChrysler andUTIA texture database.(range-map) are obtained from the estimated normal-map using integration tehniques.All surfaes are assumed Lambertian and light soures are assumed as point lightsoures in in�nity. I(x; y) = �R(zx; zy; !i) (5.11)where I(x; y) is image intensity at loation (x; y), � is albedo - the surfae reetivityoeÆient, R(zx; zy) is reetane map whih determine reeted intensity dependentlyon surfae slopes (zx; zy) (for example see (5.2)) and !i is illumination position.All diretions to light soures are ordered into a matrix L and orresponding intensityof the same pixel for di�erent illumination diretions are ordered to in matrix form I(x; y)as follows L = 264 L1...Ln 375 ; I(x; y) = 264 I1(x; y)...In(x; y) 375 : (5.12)Then surfae slopes n = [zx; zy; 1℄ for eah pixel are omputed byn(x; y) = L�1I(x; y)jjL�1I(x; y)jj (5.13)Equation (5.13) holds if only three images are used (n = 3), otherwise it is neessary touse pseudo-inversion L+ of matrix L where L+ = (LTL)�1LT instead of L�1. The optimalplaement of the illumination for three-image photometri stereo when used for apturing3D surfae texture is derived and veri�ed experimentally in [107℄. The gradient imagesan be obtained even from images where the illumination positions are unknown. Thisproblem is alled unalibrated photometri stereo and is disussed in papers [23, 106℄.As was already mentioned photometri stereo omputes normal n for every pixel inimage lattie. Based on these normals, the height data are obtained using either loal inte-gration tehniques introdued, e.g., in [57℄ or global integration tehniques as for exampleone-pass of shape from shading algorithm, e.g., [126, 29℄.Loal integration tehniquesLoal tehniques perform loal alulation of height inrements by urve integral. Thesemethods di�er in speifying an integration path, i.e., san lines and a loal neighbourhoodfor loal approximation of height inrements. Basi idea is multi-pass surfae integration inde�ned neighbourhood starting from di�erent parts of gradient image ontaining pixel-wisenormals orientation. The resulted range-map is normalised average image of individualpasses. These tehniques are easy to implement and very fast, however, the loality of



5.2: Range-Map Estimation 49the alulations auses high data dependeny and the propagation of height inrementspropagate the errors as well. These tehniques doesn't have impose any restritions onsurfae integrability.One of suh methods is desribed in [57, 97℄. The method require four sans through thegradient image aording to Fig. 5.4 During the san the height information is omputed
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Figure 5.4: Diretions of sanning in four di�erent sans through array of normals and usedontextual neighbourhood.for eah pixel by following proess. Let n = [zx; zy;�1℄ be the normal vetor at position(x; y) (see ontextual neighbourhood in Fig. 5.4). This vetor is normalised and reorderedaording to n0 = [zx; zy;�1℄qz2x + z2y + 1 ; �n0 = [�n0x; �n0y;�q1� �n02x � �n02y ℄ (5.14)then the normals are averaged within ontextual neighbourhood�nx0 = n0a;x + n0b;x + n0;x + n0d;x4 ; �ny 0 = n0a;y + n0b;y + n0;y + n0d;y4 : (5.15)Applying of following formula for eah slope position give as range-map from one san.z(d) = z(b) + z()2 + � �n0x�n0z + �n0y�n0z2 (5.16)To obtain �nal range-map it is neessary to perform all four sans as it is depited in Fig.5.4 and average their values for eah slope position.Result of photometri stereo with loal integration of slopes applied on texture witha rough surfae illuminated by light soure with tilt � = 0o and slant � = 60o is illustratedin Fig. 5.5-b. In the image we an see the slanted artifats aused by the inrementalerror during ontextual neighbourhood movement along image grid from all four sans.The solution avoiding these possible artifats is using global surfae integration tehniques.
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a) b) )Figure 5.5: Result of photometri stereo normals integration : (a) the original image, the normalsintegration (b) using loal tehniques, () using shape from shading integration.Global integration tehniquesGlobal integration tehniques treat surfae integration as optimisation problem where thegoal is to minimise ertain funtion. The global tehniques are more robust against noisein omparison to loal integration tehniques beause the surfae gradient data have globalimpat on solution proess. One example of these tehniques is one iteration of shape fromshading algorithm Alg. 2 presented in [29℄. Results of this integration approah is depitedin Fig. 5.5-b and Fig. 5.1-d. Fig. 5.6 shows examples of estimated normal and rangemaps for six di�erent materials from University of Bonn BTF database and one materialfrom UTIA rough textures database. Normal maps (seond row) were obtained by meansof photometri stereo using three di�erent BTF images with �xed viewing position andorresponding range-maps (third row) were reonstruted using mentioned shape fromshading global integration tehnique.

Figure 5.6: Normal and range maps (seond and seond row) estimated using photometri stereoand global integration tehnique for six materials from University Bonn BTF database (fabri01,fabri02, foil01, foil02, leather02 and knitted wool) together with ushion fabri from UTIA roughtexture database.



5.3: Range-Map Tehniques Overview 515.3 Range-Map Tehniques OverviewThe following table desribes main advantages and disadvantages of individual range-mapmeasurement and estimation methods.method � 	Strutured Light Sensors easy reonstrution of omplexshapes slow, missing data in some areas,problem with speularity, au-rate alibration requiredTime of Flight Sensors aurate, wide operation range relatively slow, ostly devie,problem with speularityShape from Stereo wide operation range slow, for deep senes only, onlyapproximate resultsShape from Shading only one image with known illu-mination position neessary relatively slow iterative method,only approximate resultsPhotometri Stereo fast, aurate three registered images required(with known lights position), ad-ditional normals integration re-quired5.4 Range-Map SynthesisThe range-map is usually obtained as some kind of material image proessing when both:size of the observed material and an aquisition devie resolution are limited. However,this onstrained size of a range-map is inonvenient for surfae approximation of largeobjets in VR. Thus the estimated range-map an be enlarged to required size by meansof image tiling as shown, e.g., in Setion 8.3.1. Another possibility is employing of a prob-abilisti smooth texture synthesis model introdued in Chapter 7. Apart from image tilingmethods this option is most suitable for range-map modelling of irregular materials, e.g.,plaster, leather, et. Another range-map synthesis method with real-time performane isdesribed in [51℄. Although the method enable fast range-maps synthesis on arbitrary levelof details aording to given normal density funtion the possible range-map representa-tions obtained using this model are limited to bumpy surfaes without any low frequenydetails.



Chapter 6Segmentation of BTF Data6.1 BTF segmentationBTF datasets ontain thousands of images taken for varying illumination and view dire-tions. This overall number of images orresponds to angular resolution of BTF measure-ment setup. In the ase of used Bonn university database with 81 di�erent view and 81di�erent illumination position we obtain 6561 BTF images.Due to a limited omputational apability of ontemporary hardware, the both analysisand real-time synthesis of all BTF images by means of probabilisti MRF-based BTFmodels presented in Chapter 7 would be to ostly and also superuous so a data redutionmethod is inevitable.This redution an be performed due to the fat that an individual BTF measurementshave similar olour and brightness properties with nearby illumination and viewing angles.Image similarity depends mainly on individual material reetive properties and it is quiteprobable mainly for lose spatial positions of light and amera. These fats lead us to ideaof BTF segmentation into a �nite set of BTF lusters.During segmentation the BTF data spae, spanning all view and illumination dire-tions, is divided into set of lusters. Eah suh a luster is represented by the BTF imagelosest to luster enter aording to similarity funtion. Suh an ideal similarity fun-tion should favour the overall brightness and olour hue similarity regardless of texture orshadow information presented in ompared BTF data.6.1.1 Data RepresentationOne of suitable data arrangements for BTF segmentation isBTFTEX ontaining individualimages taken for di�erent illumination and view positions (see Setion 2.3.2). Thus theresulting data spae ontains 81� 81 data features. An appropriate form of these featuresonsiderably inuene performane and speed of segmentation algorithm. Natural solutionwould be using diretly pixel values of BTF image ordered into a feature vetor. However,this solution have several shortomings. The �rst of them is length of these feature vetors.Even for relatively small data window ontaining the largest struture elements involved insimple materials annot be smaller than 20� 20. This window in three spetral hannels,results into feature vetor of size 3� 20� 20 = 1200. Suh long image features ause verytime demanding segmentations. Moreover, the pixel-wise registration of individual BTFimages is far from being perfet (auray max� 3 pixels) so the Eulidean distane of suh52



6.1: BTF segmentation 53features an lead to relatively high distane even in ases when both images are the samebut shifted for a few pixels. The seond problem is aused by a nature of BTF inludingimages with masked and shadowed areas. The pixels in two BTF images when one wastaken from head-on position and the other for high grazing angle does not neessarilyorrespond to the same loation on the measured material sample due to masking e�etaused by rough surfae struture (see Fig. 2.6). Additionally, when the view angles are�xed the hanging illumination produes shadows ourring in di�erent portions of theBTF image so again the simple Eulidean distane between two suh data features fails.6.1.2 Histogram similarityThe simple image statistis present in image histogram is handful for the purpose ofaurate BTF segmentation. As a similarity measure an be used di�erene betweenorresponding histogram bins. However, the di�erene of two histograms do not payattention on mutual positions of histogram bins in both images so using the umulativehistograms �m instead is onvenient.For a olour BTF images a orresponding histograms in individual olour hannelsare used. So eah BTF image is represented by data features ontaining subsequentlythree umulative histograms orresponding to individual olour hannels. The size of suhfeature vetors is 3� 256 = 768. The histogram similarity for one olour hannel r3 is�dH(k; i; v; r3) = nlXi=1 ( �mk � �mi;v)2 ; (6.1)where the nl is a number of image quantisation levels (i.e., in our ase nl = 256), krepresents BTF image orresponding to k-th luster enter and r3 = 1 : : : d is spetralhannel. The �nal distane for all three olour hannels is�dH(k; i; v) = �dH(k; i; v; 1) + �dH(k; i; v; 2) + �dH(k; i; v; 3) : (6.2)6.1.3 Colour-Spae TransformationThe treatment of olour data aording to human visual system is an important aspetof used umulative histogram similarity measure. To avoid weighting of individual RGBvalues aording to subjetive human eye sensitivity we transformed all BTF images intopereptually uniform CIE Lab (D65) olour-spae [123, 28℄. In CIE Lab the same olourshift in terms of Eulidean distane results into the same di�erene of visual pereption ofresulted olours and due to this reason the Eulidean distane beome appropriate metrifor BTF histograms lustering.6.1.4 K-Means ClusteringWe have used ommon iterative K-means lustering algorithm [105, 20℄ for the sake of BTFhistograms lustering. This tehnique exploits �rst order statistis of the data and �ndsa predetermined number of lusters in data spae, by minimising the sum of squared errorsriterion. The exploitation of lustering algorithm for aim of BTF data segmentation intoD lusters forming set K is introdued in Alg. 3.



54 Chapter 6. Segmentation of BTF DataAlgorithm 3: K-means Algorithm for BTF segmentation1. Give random position to 8k 2 K entres of all lusters, i.e., [i = 0 : : : 81; j = 0 : : : 81℄2. WHILE ((inner lass variane J > threshold) OR (number of iterations < max.iterations) OR (no further data shifts between lusters))(a) FOR eah feature vetor (BTF image with view position v and illuminationposition i ompute distane d(k; i; v) to every luster entre k and assign thisvetor to luster with the losest distane (Step 1):k� = argmink2K d(k; i; v) :(b) FOR eah luster k 2 K reompute its entre aording to all assigned vetors.(Step 2)3. Corresponding representative of luster k 2 K is a BTF image having the losestdistane d() to the enter of the luster k.The segmentation quality riterion of orret data distribution into individual lustersis the inner lass variane de�ned byJ = DXk=1 Xj2Sk jxj � �kj ; (6.3)where Sk is a set of data features belonging to lass k, xj vetor representing j-th datapoint and �k is a mean vetor of data in lass k, i.e., �k = 1jSkjPj2Sk xj .The whole iterative proess is stopped when J drops under prede�ned threshold orthere is no any further shift of data features between individual lasses whih indiatesoptimal distribution of data features into the lusters.Finally for eah luster is hosen one representative whih is the losest BTF imageto luster entre in sense of mentioned Eulidean metri between multispetral CIE Labhistograms.6.2 Optimal Number of ClustersThe estimate of optimal number of BTF lusters is very important step, when using K-means lustering method. We will denote this number a BTF dimensionality D. Thereare several methods based usually on BTF linear analysis using the PCA performed on all6561 BTF images or on their spatial orrelations. Here have to be noted that �nding ofprinipal omponents for whole BTF spae is tremendous omputational task whih evenfor relatively small part of original BTF images takes many hours of omputations.An alternative solution avoiding these problems onsist in starting with prede�nedminimal number of lusters. The number of lusters is then iteratively inreased by split-ting the luster of the biggest inner-variane J (6.3). The luster adding iterations arerepeated till the number of data features (orresponding BTF images) in eah luster orthe inner variane in all individual lusters is smaller than prede�ned threshold.



6.2: Optimal Number of Clusters 556.2.1 PCA on Raw DataOne way to obtain optimal BTF dimensionality D is employing the image statistialmethods. One of them is PCA of whole BTF data spae. All pixels from window of sizeM � N ut from individual BTF images are ordered into vetors X and entered usingmean BTF image vetor �X. All these vetors form matrixA of size 3MN�ninv as followsA = [X1 � X̂;X2 � X̂; : : : ;Xni�nv � X̂℄ (6.4)In the following step the symmetri matrix M = ATA is omputed. Note than even thissymmetrisation step is quite long sine the size of matrix A, even if taking into aountonly BTF image area 20�20, is 1200�6561. So for material with large struture elementsthe matrix an be onsiderably larger whih auses very long omputational times.When having the symmetri matrix M the SVD is performed resulting into the fol-lowing deomposition M =UDVT (6.5)where U;VT ontain orthonormal olumns, rows respetively and D is non-negative di-agonal matrix ontaining sorted eigen-values.The individual eigen-values from diagonal matrix D weight the importane of eigen-vetors ontained in matries U and VT for matrix M reonstrution. The number ofpreserved eigen-numbers approximately orresponds to the BTF dimensionality D aord-ing to the equation PDi=1 �2iPninvi=1 �2i � F : (6.6)where �2i are squared eigen-values sorted downwardly on diagonal of matrix D and F isa fration lose to 1 whih enables preservation of the most important BTF features. Inour experiments on several BTFs we suppose F = 0:9 as satisfatory approximation.From this follows that only D eigen-values and orresponding eigen-vetors (i.e., eigen-BTF images) have to be stored for BTF dataset reonstrution holding most of the originalBTF information.Plotting of the �rst thirty eigen-values and orresponding logarithmi eigen-values,illustrated in Fig. 6.1, shows that only about 10 to 30 BTF images overs most of theinformation in BTF of tested materials. Fig. 6.1 shows that most of the materials an besatisfatory approximated by means of linear ombination of relatively low number D ofeigen-BTFimages.6.2.2 PCA on Raw Data CorrelationsThe BTF dimensionality D should orrespond to number of texture images, whih areneessary for orret reonstrution of whole BTF dataset. Another possible way to obtainD was presented in paper of Suen and Healey [109℄.The method determines texture dimensionality using orrelation funtions omputedin small area of eah BTF image. If we assume that all BTF images are already reti�ed(rotated to head-on position, i.e., the texture normal is idential to amera axis), theorrelation between spetra i and j is omputed in following wayRij(m) = 1j�(m)j Xx2�;(x+m)2�[Ii(x)� �Ii℄[Ij(x+m)� �Ij ℄ ; (6.7)



56 Chapter 6. Segmentation of BTF Datawhere x = [r1; r2℄T are planar oordinates in BTF image,m = [m;n℄ are orrelation shifts,�Ii = 1j�jXx2� Ii(x)and similarly for �Ij, � is the region in the image whih the sample oupies, j�(m)j isnumber of loations where x 2 � and (x+m) 2 �.If three spetral bands in BTF images are assumed (RGB), we have namely followingnine orrelations per eah image pixel RRR; RRG; RRB ; RGR; RGG; RGB ; RBR; RBG; RBB .The values of m;n an vary in intervals 0 � m � mmax and �nmax � n � nmax. Thus�nally 9(mmax+1)(2nmax+1) orrelations for every image are obtained and their values areordered into a olumn vetor of this length. Suh a vetor is obtained for every BTF imageof all ninv BTF images. Finally the matrixR (6.7) with size 9(mmax+1)(2nmax+1)�ninvis built.On matrix R is performed SVD whih �nds diagonal matrix D with eigen-values and
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Figure 6.1: The thirty highest eigen-values plotting for eight distint BTFs. The �rst imagedepits standard eigen-values plotting while the seond image shows orresponding logarithmivalues.



6.3: Clustered BTF Representation 57matries U, V with orresponding eigen-vetors.R = UDVT (6.8)The eigen-values are sorted aording to their size downwardly so �1 � �2 � : : : � �ninv .The BTF dimensionality D is obtained from the formula (6.6)6.3 Clustered BTF RepresentationThe �nal BTF reonstrution is based on luster index �le whih stores indies of theindividual luster representative images being used for ertain light and amera positionsi and v. The example of luster index for D = 15 together with orresponding lusterrepresentative images for material leather01 is shown in Fig. 6.2.
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Figure 6.2: Cluster subspae index for the leather01 BTF ontaining 15 lusters (left). The BTFimages withdrawn aording to lustering results (right). Eah image represents the losest BTFimage to enter of eah luster with respet to olours in luster index (left).Only these images so-alled BTF subspaes (Fig. 6.2-right) are synthesised using MRFmodels presented in Chapter 7 and their parameters are stored along with luster indextable (Fig. 6.2-left). Aording to these data the BTF texture image with mesostru-ture and mirostruture orresponding to required illumination and view diretion aresynthesised.From luster index in Fig. 6.2-left and Fig. 6.3 it is apparent that the hange ofillumination diretion, in omparison with the hange of view diretion, results in higherluster di�erene as was mentioned already in [59℄. See horizontal stripes of di�erent\bakground" lusters whih orresponds to hange of illumination elevation angle.
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Figure 6.3: Subspae index images for four di�erent materials: leather02 (12 lusters), fabri02(13 lusters), wool (15 lusters) and wood02 (15 lusters).



Chapter 7Probabilisti BTF ModellingThe main requirements on ideal BTF model are preservation of visual quality, ompatsize of parametri set and low omputational demands. All the BTF ompression andmodelling methods mentioned in Chapter 2 are based on repetition of stored BTF im-ages or on some kind of their pixel-wise parametri representation. These approahesenable relatively low BTF data ompression and require additional, usually sample-based,methods for enlargement of synthesised BTF images.This hapter introdues several novel BTF models whih remedy mentioned disadvan-tages of ontemporary BTF models at the prie of ompromise visual quality for somematerials. Proposed models are generative so they do not need to store any form of origi-nal BTF measurements but only very restrited model statistis. This approah allows toreah huge ompression ratio of the original BTF measurements, while the fast BTF datasynthesis and rendering is guaranteed.The proposed probabilisti BTF model is based on two main parts: BTF segmentationinto subspaes and subspae modelling as depited in a blok sheme on Fig. 7.1.
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Figure 7.1: The overall sheme of proposed probabilisti BTF model.The BTF segmentation method is in detail desribed in the previous hapter while thesubspae modelling is subjet of this hapter. The proposed BTF modelling approah per-forms well on smooth BTFs with stohasti struture, e.g., wood, plaster, et. However,due to its inherent priniple it has diÆulties to reprodue regular low frequeny struturesoften present for instane in BTFs of textiles. To overome this drawbak we introduemodi�ed BTF model with additional rough surfae struture proessing pipeline based onheight data estimation and modelling as it is illustrated in Fig. 7.2. The additional pro-essing onsist in range and normal maps estimation and their subsequent enlargement.The �nal BTF image is obtained as ombination of original interpolated subspae syn-59



60 Chapter 7. Probabilisti BTF Modellingthesis and height data in displaement or bump mapping �lter. Suh an approximationis generally possible only for materials ful�lling Lambertian reetane law, however, itgives satisfatory results also for materials where this assumption does not hold. This
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subspaceFigure 7.2: The overall sheme of proposed probabilisti BTF model with additional roughinformation proessing pipeline.approah simpli�es the underlying probabilisti MRF models struture as well as theirorresponding robust parameters estimation problem and allow shading and satteringapproximation by means of GPU.7.1 BTF Segmentation into SubspaesAll three proposed BTF models (Fig. 7.1 and Fig. 7.2) starts with the BTF image spaesegmentation into several subspaes. This is done using the K-means algorithm in the fea-ture spae that onsists of all view and illumination ombinations using olour umulativehistogram data as data features. Currently the best available BTFs are represented by81 view � 81 illumination diretions (for University of Bonn data [98℄). To obtain moreaurate segmentation results the umulative histograms are omputed in pereptuallyuniform CIE Lab olour-spae. Desribed segmentation divides BTF spae into a set ofsubspaes and eah of them is represented by the nearest BTF image that orresponds toluster enter in sense of Eulidean distane between two umulative histograms.An important issue is the optimal number of subspaes. The eigen-value analysis(PCA) of whole BTF data spae leads us to the onlusion that the intrinsi BTF spaedimensionality for most BTF texture samples is between ten and thirty. Hene the �rstlargest 10 to 30 eigen-values ontain often 90% of the whole information. Several exam-ples of BTF spae segmentations for di�erent materials are depited in Fig. 6.3. Werestrited the maximal number of subspae images in our implementations to twenty withrespet to limited GPU memory, omputational demands as well as satisfatory visualBTF reonstrution. More details on BTF segmentation are given in Chapter 6.7.2 Surfae Height Data Estimation and EnlargementThe BTF models exploit range and normal map estimated from the original BTF mea-surements for representation of rough material marostruture. This an be performed by



7.3: Multisale Multispetral Subspae Models 61means of several method as it is disussed in Chapter 5. We have used a simple photo-metri stereo whih is preferable for BTF data having tens of ideally mutually registeredimages with known light positions. The photometri stereo enables to aquire the normaland albedo �elds from intensity images when the Lambertian opaque surfae is assumed(for details see [121℄).This method provide relatively aurate approximation of material marostruture. Weobtained satisfatory results for many real-world materials suh as for instane plaster,leather, et. Range data enlargement to required resolution was aomplished by meansof image tiling method presented in [103℄ (see Setion 8.3.1) or using the MRF modellingapproah.7.3 Multisale Multispetral Subspae ModelsIn this setion we propose the three di�erent Markov Random Field (MRF) subspaemodels whih are responsible for material modelling on mesostruture and mirostruturelevel. Individual luster representative subspae images obtained using BTF segmentationare subsequently analysed by means of one of these probabilisti MRF models. Thesimultaneous modelling of suh multispetral subspae images generally requires threedimensional models. If a 3D data spae an be fatorised then these data an be modelledusing a set of less-dimensional 2D random �eld models, otherwise it is neessary to usesome 3D random �eld model. Although, full 3D models allow unrestrited spatial-spetralorrelation modelling its main drawbak is the large number of parameters that have tobe estimated and onsequently more time demanding analysis as well as synthesis.7.3.1 3D ModelsThe modelling of general multi-spetral textures requires three dimensional model thatallow unrestrited spatial-spetral orrelation representation. Three dimensional modelsan be divided into two major ategories with respet to the type of model's ontextualneighbourhood (CN): ausal and non-ausal. The non-ausal models do not have anypartiular restrition on the shape of CN, however, their omputation is very slow sinein most MRF models it requires an iterative Monte Carlo methods. On the other hand,the ausal models restrit the CN shape to be either ausal or unilateral, i.e., duringomputation the CN take into aount during omputation only the known or alreadyomputed image pixels (see example in Fig. 7.6). This enables use some exeptionalmodels for fast analytial parameter estimation methods as well as to perform fast modelsynthesis.The basi blok sheme of 3D multisale multispetral model is depited in Fig. 7.3The whole subspae images modelling proess an be split into two major parts. The�rst one is a simultaneous analysis of all subspae images by means of 3D MRF model.The seond part is a fast subspae images synthesis of arbitrary resolution based on MRFmodel parameters omputed in the previous analytial step.In omparison with the o�ine analysis the synthesis has to be fast enough to enablereal-time rendering of synthesised BTFs in VR systems.
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synthesised image resolutionFigure 7.3: The sheme of 3D MRF multisale multispetral subspae model.AnalysisIndividual subspae images are deomposed into a multi-resolution grid and eah resolutiondata are independently modelled by their dediated MRF model. This enable eÆientmodelling of all visual features of subspae images. The multi-resolution grid is reatedby means of a Gaussian-Laplaian pyramid as is desribed in full details in Setion 7.3.4.The results of the analytial part are several MRF models with di�erent parametersorresponding to di�erent syntheti results. Sine there is not any suitable similaritymeasure to ompare visual quality of olour textures available so far, we hoose the optimalmodel struture aording to subjetive visual observation as is disussed in Chapter 9.The analysis of 3D MRF models generally leads to the omputationally demandingMonte Carlo iterative tehniques. However, after several restritions, as mentioned above,we an avoid this iterative parameter estimation and use the fast analytial estimationtehniques.Generally the MRF model is generative so it does not require to store any samples oforiginal subspae textures. The number of the 3D model parameters depends only on thenumber of input data spetral hannels and on size of model's ontextual neighbourhood.Thus the 3D MRF model enable unbeatable ompression of subspae images. The BTFmodel parameters for one material in form of the oating point numbers take up typiallyabout 100KB in average for ontextual neighbourhood inluding six support pixels andthree pyramid layers.SynthesisThe synthesis of 3D model is proess omplementary to the analysis, however, in ompar-ison with analytial part of proposed analytial 3D MRF model, its synthesis is very fastand onsist of individual multi-resolution pyramid planes synthesis and their subsequentinterpolation during spatial defatorisation step (inversion proess to (7.4),(7.6)). Basedon the parameters of 3D MRF model the subspae images of arbitrary resolution an besynthesised.7.3.2 Approximation using 2D ModelThe fatorisation alternative of 3D data models is attrative beause it allows using simpler2D data models with less parameters and onsequently also easier implementation. Inour ase the spetral fatorisation was employed to deompose individual multispetralsubspae images into monospetral fators whih are modelled independently by theirdediated 2D models. The blok sheme of general 2D multisale multispetral model is
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synthesised image resolutionFigure 7.4: The sheme of 2D MRF multisale multispetral subspae model.illustrated in Fig. 7.4.The whole subspae images modelling proess an be again split into two major parts.The �rst one is subsequent analysis of subspae images by means of a 2D MRF model.The seond part is fast subspae images synthesis of arbitrary resolution based on MRFmodel parameters omputed in the previous analytial step.AnalysisApart from 3D model the 2D model starts with a spetral fatorisation step whih resultsinto a set of monospetral subspae fators. The spetral fatorisation is aomplishedby the Karhunen-Loeve transformation of input multispetral data (see Setion 7.3.3 fordetails). Eah monospetral deorrelated plane is subsequently spatially fatorised usinga Gaussian-Laplaian multi-resolution pyramid and eah monospetral subband image isanalysed by means of a 2D MRF model resulting into a texture representation by themodel parameters. So eah monospetral subspae fator have dediated multi-resolutionpyramid and eah pyramid resolution layer is analysed by dediated 2D MRF model.As a result of multispetral data analysis a matrix of inverse Karhunen-Loeve transfor-mation is stored together with 2D MRF model parameters for individual subspae images.The number of the 2D MRF model parameters depends again on the number of inputdata spetral hannels of individual subspae images and on the size of model's ontextualneighbourhood. Thus the 2D MRF model enable even higher ompression of subspaeimages than 3D model. The BTF model parameters for one material take up typiallyabout 60KB in average for ontextual neighbourhood with six support pixels and threepyramid layers.SynthesisThe synthesis of monospetral subspae fators requires reonstrution of individual planesof the multi-resolution pyramid. Eah monospetral �ne-resolution omponent is obtainedfrom the pyramid ollapse proedure (inversion proess to (7.4),(7.6)). Finally the re-sulting synthesised multispetral subspae image is obtained from the set of synthesisedmonospetral images using the inverse Karhunen-Loeve transformation. Based on the pa-rameters of 2D MRF model and the inverse Karhunen-Loeve transformation matrix theproposed 2D model enable synthesis of subspae images in arbitrary resolution. Despitethe essential omputation of the inverse Karhunen-Loeve transformation the synthesis ofthe proposed 2D model is very fast. Moreover, the 2D multisale multispetral model anbe appropriate andidate for fast hardware aelerated implementation sine the synthesis



64 Chapter 7. Probabilisti BTF Modellingonsists of relatively simple operations. The idea of suh an implementation is desribedin Setion 7.5.1.7.3.3 Spetral FatorisationA real data spae an be deorrelated only approximately, hene the independent spetralomponent modelling approah su�ers from some loss of image information, however, thisloss of spetral information is only visible in textures with many substantially di�erentolours. Spetral fatorisation using the Karhunen-Loeve expansion transforms the orig-inal entered data spae ~Y de�ned on the retangular M � N �nite lattie I into a newdata spae with K-L oordinate axes �Y . This new basis onsists of the eigenvetors of theseond-order statistial moments matrix (7.1)� = Ef ~Yr ~Y Tr g (7.1)where the multiindex r has two omponents r = fr1; r2g, the �rst omponent is row andthe seond one olumn index, respetively. The projetion of random vetor ~Yr onto theK-L oordinate system uses the transformation matrixT = [uT1 ; uT2 ; : : : ; uTd ℄T (7.2)whih has rows uj that are eigenvetors of the matrix �. The number d of eigenve-tors depends on the number of spetral bands in the original multispetral data ~Yr (forappliations in RGB olourspae the d = 3). Components of the transformed vetor�Yr = T ~Yr (7.3)are mutually unorrelated and if we assume that they are also Gaussian then they areindependent thus eah transformed monospetral fator an be modelled independently ofthe remaining spetral fators.7.3.4 Spatial FatorisationThe spatial fatorisation is tehnique that enables separate modelling of individual fre-queny omponents of input image data. So these multi-spetral image data are deom-posed into a multi-resolution grid and eah resolution data are independently modelled bydediated MRF model. Eah grid resolution represents a single spatial frequeny band ofthe texture whih orresponds to one layer of Gaussian-Laplaian pyramid.The input multi-spetral image is deomposed into a multi-resolution grid and allresolution data fators represents the Gaussian pyramid �Y (k)r of level k. The Gaussianpyramid �Y (k)r is a sequene of k images in whih eah one is a low-pass downsampledversion of its predeessor. Gaussian �lter is approximated by the weighting funtion (FIRgenerating kernel) w whih is hosen to omply:separability ws = ŵs1ŵs2normalisation Pi ŵi = 1symmetry ŵi = ŵ�iequal ontribution ŵ0 = 2ŵ1 (l = 1)



7.3: Multisale Multispetral Subspae Models 65where l represents size of kernel funtion and s = fs1; s2g in row and olumn index in thekernel.The equal ontribution onstraint requires that all nodes at the given level ontributethe same total weight to the nodes at the next higher level. The solution of above onstrainsfor the redution fator 3 (2l + 1) is ŵ0 = 0:5, ŵ1 = 0:25, for redution fator 5 it isŵ0 = �; ŵ1 = 0:25� 0:5� where usual hoie is � = 0:4.

Figure 7.5: Multisale texture deomposition into the Gaussian-Laplaian pyramid. The Gaus-sian, Laplaian and Gaussian-Laplaian pyramids respetively.The Gaussian pyramid for a redution fator n (for n = 2 the N �N image is down-sampled to N2 � N2 ) is �Y (k)r;i =#n ( �Y (k�1)�;i 
 w) k = 1; 2; : : : ; (7.4)where �Y (0)�;i = �Y�;i ; #n denotes down-sampling with redution fator n and 
 is theonvolution operation. Convolution an be substituted using�Y (k)r = lXi;j=�l ŵiŵj �Y (k�1)2r+(i;j) : (7.5)An analysed texture is deomposed into multiple resolutions fators using the Laplaianpyramid and the intermediary Gaussian pyramid �Y (k)�;i whih is a sequene of imagesin whih eah one is a low-pass down-sampled version of its predeessor. Eah levelof Laplaian pyramid generates a single spatial frequeny band of the texture and isindependently modelled by its dediated 2D subspae model (see setions 7.3.7, 7.3.6and 7.3.5). Suh a Laplaian pyramid _Y (k)r;i ontains band-pass omponents and providesa good approximation to the Laplaian of the Gaussian kernel. It an be onstruted bydi�erening single Gaussian pyramid layers:_Y (k)r;i = �Y (k)r;i � "n ( �Y (k+1)�;i ) k = 0; 1; : : : ; (7.6)where "n is the up-sampling with an expanding fator n. The example of resultedGaussian-Laplaian pyramid is illustrated in Fig. 7.5.



66 Chapter 7. Probabilisti BTF ModellingThere are several alternative spatial fatorisation approahes to the Gaussian-Laplaianpyramid available suh as a steerable pyramid introdued in [43, 93℄. However, this teh-nique is muh slower than the approah proposed above so we did not use it in this thesis.7.3.5 3D Causal Auto-Regressive Subspae ModelMulti-spetral subspae images are deomposed into a multi-resolution grid and eah res-olution data is modelled independently by independent Gaussian noise driven 3D CARMRF model that enable simultaneous modelling of all subspae images.Let the digitised olour texture Y is indexed on a �nite retangular three-dimensionalN �M � d underlying lattie I, where N �M is the image size and d is the number ofspetral bands (i.e., d = 3 for usual olour textures). Let us denote a simpli�ed multiindexr to having two omponents r = fr1; r2; r3g. The �rst omponent is a row index, theseond one is a olumn index and the third is a spetral index, respetively.Ir spei�es shape of the ontextual neighbourhood (CN) around the atual indexr = fr1; r2; r3g. Causality is ful�lled when all data obtained from CN are known (notmissing pixels). The example of 2D ausal and non-ausal CN is depited in Fig. 7.6.
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directionFigure 7.6: The example of 2D ausal (a) and non-ausal (b) ontextual neighbourhood.From this ausal ontextual neighbourhood the known data are arranged into a vetor:Xr = [Y Tr�s : 8fsg 2 Ir ℄T : (7.7)The (CAR) random �eld is a family of random variables with a joint probability densityon the set of all possible realisations Y of the M�N�d lattie I, subjet to the followingondition: p(Y j�;��1) = (2�)� d(MN�1)2 j��1j (MN�1)2 (7.8)exp(�12 tr(��1 ��I�T �T ~VMN�1 ��I�T �)) ;where I is identity matrix, � is parameter matrix, � is ovariane matrix of Gaussianwhite noise and ~Vr�1 =  ~VY Y (r�1) ~V TXY (r�1)~VXY (r�1) ~VXX(r�1) ! : (7.9)The used notion is: ~VXX(r�1) = r�1Xk=1XkXTk ;



7.3: Multisale Multispetral Subspae Models 67~VXY (r�1) = r�1Xk=1XkY Tk ;~VY Y (r�1) = r�1Xk=1YkY Tk : (7.10)Simpli�ed notation r; r� 1; : : : denotes the multispetral proess position in I, i.e.,r = fr1; r2; r3g, r � 1 is the loation immediately preeding fr1; r2; r3g, et. A diretionof movement on the underlying image sub-lattie is ommon rows sanning. r � 1 =(r1 �41; r2 �42; r3); r� 2 = (r1 � 241; r2 � 242; r3); : : :. The data from model historyobtained during adaptation are denoted as Y (r�1).For the sake of proper model adaptation the standard exponential forgetting fatortehnique in parameter learning part of the algorithm [35℄ an be used. This approahenable to suppress an inuene of distant data in model history during parameter estima-tion step. The exponential forgetting fator is stated by parameter  and afterwards theequations (7.10) beome~VXX(r�1) =  r�2Xk=1XkXTk +Xr�1XTr�1 ;~VXY (r�1) =  r�2Xk=1XkY Tk +Xr�1Y Tr�1 ;~VY Y (r�1) =  r�2Xk=1YkY Tk + Yr�1Y Tr�1 : (7.11)The 3D CAR model an be expressed as a stationary ausal unorrelated noise driven3D autoregressive proess: Yr = �Xr + er ; (7.12)where � is the d� d� parameter matrix� = [A1; : : : ; A�℄ ; (7.13)and Ai = 0BB� ai1;1 : : : ai1;d... . . . ...aid;1 : : : aid;d 1CCA 8i 2 f1 : : : �g ; (7.14)� = ard(Ir) ; Ir is a ausal CN, er is a Gaussian white noise vetor with zeromean and a onstant but unknown ovariane matrix �.Optimal Support Set EstimationThe seletion of an appropriate CAR model support is important to obtain good modellingresults. Too small ontextual neighbourhood an not apture all details while inlusionof surplus neighbours add the omputational burden and an potentially degrade theperformane of the model as an additional soure of noise. The optimal neighbourhoodan be found using the Bayesian deision rule for minimising the average probability of



68 Chapter 7. Probabilisti BTF Modellingdeision error. Let us assume a set of CAR models (7.12) M1;M2; : : : whih an di�ereither in the ontextual neighbourhood Ir1;r2;r4 or / and in their exponential forgettingfator  (7.11). The optimal deision rule for minimising the average probability ofdeision error hooses the maximum a posterior probability model, i.e., a model whoseonditional probability given the past data is the highest one. The presented algorithman be therefore ompleted [41℄ as:~Y ir = ~�i;Tr�1Xi;r + ei;r if p(MijY (r�1)) > p(MjjY (r�1)) 8j 6= i (7.15)where Xi;r are data vetors orresponding to Iir1;r2;r4 . The Following Bayesian frameworkused in our paper, hoose uniform a priori model in the absene of ontrary information,p(MijY (t�1)) � p(Y (t�1)jMi); and assume onditional pixel independene.Thus the most probable CAR model given past data, the normal-Wishart parameterprior and the uniform model prior is the model whih maximise the statistis [41℄ is thenp(Mj jY (r�1)) = k expfDjg ; (7.16)where Dj = �d2 ln jVXX(r�1)j � �(r)� d� + d+ 12 ln j�(r�1)j + d2�2 ln�dXi=1 �ln���(r)� d� + d+ 2� i2 �� ln���(0) � d� + d+ 2� i2 ��where k is a ommon onstant and �(n) is the Euler funtion. All statistis related toa model Mj ~VXY (r�1), ~VXX(r�1), are omputed from data in Xj;r. The determinantjVXX(r)j as well as �r an be evaluated reursively see [40℄.Parameter EstimationThere are two parameters �̂r; �̂r to estimate / update in eah step, i.e., CN shift on imagelattie. The �rst one is parameter matrix �̂r and the seond one is noise ovariane matrix�̂r. Beause of the model ausality the parameter estimations (7.17),(7.18) of the CARmodel using the Bayesian method and the normal-Wishart parameter prior an be foundanalytially [40℄. The estimate of parameter matrix is�̂Tr�1 = V �1XX(r�1)VXY (r�1) ; (7.17)while the estimate of proess-history-data ovariane matrix is�̂r�1 = �(r�1)�(r) ; (7.18)where �(r) = VY Y (r) � V TXY (r)V �1XX(r)VXY (r) ; (7.19)VXX(r�1) = ~VXX(r�1) + VXX(0) ;VXY (r�1) = ~VXY (r�1) + VXY (0) ;VY Y (r�1) = ~VY Y (r�1) + VY Y (0) (7.20)(7.21)



7.3: Multisale Multispetral Subspae Models 69and matries VXX(0); VXY (0); VY Y (0) are the orresponding matries from the normal-Wishart parameter prior. The estimates (7.17),(7.18) an be also evaluated reursively ifneessary. Where the �(r) represents number of model movements on image plane:�(r) = �(0) + r � 1 ; (7.22)�(0) > 1 : (7.23)Subspae SynthesisThe CAR model synthesis is very simple and the Markov random �eld an be diretlygenerated from the model equation (7.12) with respet to CN data vetor Xr and param-eter matrix �̂r using a multivariate Gaussian white-noise generator. The �ne-resolutionsyntheti texture is obtained from the pyramid ollapse proedure, whih is inverse proessto the spatial fatorisation (7.4),(7.6) desribed in Setion 7.3.4.7.3.6 2D Causal Auto-Regressive Subspae ModelSpetral fatorisation (7.3) of multispetral subspae images into individual monospetralfators allows to use simpler 2D CAR model [37℄. These single orthogonal monospetralfators of subspae image are further deomposed into a multi-resolution grid and eahresolution data are independently modelled by their dediated independent Gaussian noisedriven autoregressive random �eld model (CAR) as follows.The ausal autoregressive random �eld (CAR) is a family of random variables witha joint probability density on the set of all possible realisations Y of the M �N lattieI, subjet to following ondition:p(Y j ; ��2) = (2��2)� (MN�1)2 (7.24)exp(�12 tr(��2 ���T �T ~VMN�1 ���T �)) ;where � is a unit vetor,  is parameter vetor, � is variane of Gaussian white noise andthe following notation is used~Vr�1 =  ~VY Y (r�1) ~V TXY (r�1)~VXY (r�1) ~VXX(r�1) ! ;where ~VXX(r�1); ~VXY (r�1); ~VY Y (r�1) are matries de�ned in (7.10). Similarly to 3D CARmodel we an employ model adaptation by means of exponential forgetting fator teh-nique aording to equation (7.11).The 2D CAR model an be expressed as a stationary ausal unorrelated noise driven2D autoregressive proess: Yr = Xr + er ; (7.25)where  = [a1; : : : ; a�℄ (7.26)is the parameter vetor, Ir is a ausal neighbourhood with � = ard(Ir) and er is a whiteGaussian noise with zero mean and a onstant but unknown variane �2 and Xr is aorresponding vetor of Yr�s (see (7.7)).



70 Chapter 7. Probabilisti BTF ModellingParameters EstimationParameter estimation of a CAR model using the maximum likelihood, the least square orBayesian methods an be found analytially. The Bayesian parameter estimations of theausal AR model with the normal-gamma parameter prior whih maximise the posteriordensity are: ̂Tr�1 = V �1XX(r�1)VXY (r�1) (7.27)and �̂2r�1 = �(r�1)�(r) ; (7.28)where �(r�1) = VY Y (r�1) � V TXY (r�1)V �1XX(r�1)VXY (r�1) ; (7.29)VXX(r�1) = ~VXX(r�1) + VXX(0)VXY (r�1) = ~VXY (r�1) + VXY (0)VY Y (r�1) = ~VY Y (r�1) + VY Y (0) ; (7.30)�(r) = �(0) + r � 1 (7.31)and submatries in VXX(0); VXY (0); VY Y (0) are from normal-gamma parameter prior. Theestimates (7.27) an be also evaluated reursively if neessary.Subspae SynthesisThe CAR model synthesis is very simple and a ausal CAR random �eld an be diretlygenerated from the model equation (7.25). Single CAR models synthesise spatial frequenybands of the texture. Eah monospetral �ne-resolution omponent is obtained fromthe pyramid ollapse proedure (inversion proess to (7.4),(7.6)). Finally the resultingsynthesised olour texture is obtained from the set of synthesised monospetral imagesusing the inverse K-L transformation (7.32).~Yr;� = T�1 �Yr;� (7.32)If a single visualised sene simultaneously ontains BTF texture view and angle ombi-nations whih are modelled by di�erent probabilisti models (i.e., models supported bydi�erent BTF subspaes) for the same material all suh required subspae images are eas-ily synthesised simultaneously. Simultaneous synthesis allows to avoid diÆult subspaeimages registration problems.7.3.7 2D Gaussian-Markov Random Field Subspae ModelSimilarly to 2D CAR model the single orthogonal monospetral fators of subspae imageare further deomposed into a multi-resolution grid and eah resolution data are inde-pendently modelled by their dediated independent Gaussian Markov random �eld model(GMRF).



7.3: Multisale Multispetral Subspae Models 71The Markov random �eld is a family of random variables with a joint probability den-sity on the set of all possible realisations Y of the lattie I, subjet to following onditions:p(Y�;i) > 0; 8Y ; (7.33)and the Markov property:p(Yr;i jYs;i : 8s 2 I n frg) = p(Yr;i jYs;i : 8s 2 Ir;i) ; (7.34)where Ir;i is a ontextual support set (CN) of the i-th monospetral �eld.If the loal onditional density of the MRF model (7.35) is Gaussian, we obtain theontinuous Gaussian Markov random �eld model (GMRF):p(Yr;i jYs;i8s 2 Ir;i) = (2��2i )� 12 expf�12��2i (Yr;i � ~�r;i)2g ; (7.35)where the onditional mean value is~�r;i = EfYr;i jYs;i8s 2 Ir;ig = �r;i + Xs2Ir;i as;i(Yr�s;i � �r�s;i) ; (7.36)where �r is a loal mean value and �i; as;i 8s 2 Ir;i are unknown parameters. The 2DGMRF model an be expressed as a stationary non-ausal orrelated noise driven 2Dautoregressive proess: ~Yr;i = Xs2Ir;i as;i ~Yr�s;i + er;i (7.37)where the noise er;i is random variable with zero mean. The er;i noise variables aremutually orrelatedRei = Efer;ier�s;ig = 8<:�2i if s = (0; 0),��2i as;i if s 2 Ir;i,0 otherwise. (7.38)Correlation funtions have the symmetry property Efer;ier+s;ig = Efer;i er�s;ig henethe neighbourhood support set and their assoiated oeÆients have to be symmetri, i.e.s 2 Ir;i ) �s 2 Ir;i and as;i = a�s;i :Optimal Support Set SeletionThe seletion of an appropriate GMRF model support is important to obtain good resultsin modelling of a given random �eld. If the ontextual neighbourhood is too small it annot apture all details of the random �eld. Inlusion of the unneessary neighbours on theother hand add the omputational burden and an potentially degrade the performane ofthe model as an additional soure of noise. We use hierarhial neighbourhood system Ir;i,e.g., the �rst-order neighbourhood is Ir;i = fr� (0; 1); r + (0; 1); r � (1; 0); r + (1; 0)g, et.thus the ontextual neighbourhood is symmetri. An optimal neighbourhood is detetedusing the orrelation method [39℄ favouring neighbours loations orresponding to largeorrelations over those with small orrelations.



72 Chapter 7. Probabilisti BTF ModellingParameter EstimationThe GMRF model does not ful�l ausality assumption and mutual dependenies of pixelsin non-ausal symmetri ontextual neighbourhood (7.38) leads to numerial non-linearMonte Carlo parameters estimation methods. To avoid this slow iterative estimationproess the individual pixel values in CN are assumed to be onditionally independent andthus parameters estimation an be performed analytially by means of pseudo-likelihoodor alternatively least-squares estimators. The orresponding pseudo-likelihood estimatefor as parameters has the formi = [as;i : 8s 2 Ir;i℄ = [X8r2IXTr;iXr;i℄�1 X8r2IXTr;iYr;i ; (7.39)where Xr;i = [Yr�s;i : 8s 2 Ir;i℄ (7.40)and �2i = 1MN MNXr=1(Yr;i � iXTr;i)2 : (7.41)Subspae SynthesisThe non-ausal GMRF model generally requires a time onsuming iterative Monte Carlomethods for data synthesis. However, when the input image, i.e., underlying regularretangular random �eld index set, is de�ned on toroidal image lattie a simpler non-iterative methods an be employed [33℄ for a �nite lattie GMRF synthesis. The moste�etive synthesis method uses the disrete fast Fourier transformation, whih somewhatlimits using of this model for fast GPU appliations. Aording to [50℄ the GMRF an begenerated from Y�;i = F�1fŶ�;ig+ Ui ; (7.42)where Ui the mean vetor of the whole �led and Ŷ�;i is generated from the Gaussiangenerator N (0; NMSY (r; i)). SY (r; i) is the assoiated power spetrum [34℄ and N �M isthe underlying generated lattie size. Single GMRF models synthesise spatial frequenybands of the texture. Eah monospetral �ne-resolution omponent is obtained fromthe pyramid ollapse proedure (inversion proess to (7.4),(7.6)). Finally the resultingsynthesised multispetral texture is obtained from the set of synthesised monospetralimages using the inverse K-L transformation (7.32) in the same way as in previous 2DCAR model.7.4 ResultsThe results of the proposed probabilisti BTF models are presented in two di�erent ways.The �rst one is an approximation of spare set of the original BTF measurements whihare visually ompared with their original ounterparts. The seond one is BTF renderingon 3D objet. The objet surfae exhibits many di�erent ombination of view and illu-mination diretions and show overall behaviour of BTF model while it is ompared withoriginal tiled BTF data.



7.4: Results 737.4.1 Synthesis of Individual BTF ImagesThe most straightforward way of veri�ation of the proposed BTF model results is a om-parison of synthesised images with original BTF measurements. In this initial experimen-tal part we piked up three BTF measurements orresponding to �xed viewing position(�v; �v) while the illumination elevation angle �i and the illumination azimuthal angle �isigni�antly di�ers: �i = 45o; �i = 0o, �i = 60o; �i = 90o and �i = 75o; �i = 180o (seeFig. 2.2).We used three distint BTF materials from the University of Bonn BTF database[98℄ ontaining regular surfae struture: fabri02, foil02 and knitted wool. Additionaltest was performed on ushion fabri rough texture measurements from the UTIA texturedatabase. Figs. 7.7, 7.8, 7.9 and 7.10 shows results of our tests for all proposed prob-abilisti BTF models: GMRF, 2D CAR and 3D CAR. The upper row in eah of theseimages illustrates three distint utouts from original BTF measurements aompanied bymaterial range-map estimated by photometri stereo (see Setion 5.2.3). The seond rowshows orresponding underlying synthesised images for individual MRF models. The thirdrow shows ombination of these synthesised images with the range-map aording to lightposition by means of displaement mapping tehnique (see Setion 4.3.2). The depitedsynthesised images are enouraging, however, our approah an not handle all e�ets o-urring when an arbitrary real-world material is lit from di�erent diretions. E.g., fabrimaterials woven from distint material threads being oriented to di�erent diretions. Thisombination leads to distint reetane properties of the material dependently on a givensurfae loation. These material attributes an not be reprodued by means of displae-ment �lter and their orret modelling require substantially more omplex physial modelof individual mesostruture elements, e.g., woven knits, metal grooves et. This e�et anbe observed for fabri02 material in Fig. 7.7 and ushion fabri in Fig. 7.10. In the �rstoriginal image (upper left) for the both materials are visible light areas whih were notorretly reprodued by proposed probabilisti BTF model.A similar problem ours for transluent materials. One example of suh a materialwhere the Lambertian assumption does not hold is knitted wool in Fig. 7.9. Mainly thesynthesis of the seond image does not orrespond to the original and the synthesisedimages looks like a rigid surfae. In spite of these shortomings the proposed BTF modelis apable of reliable approximation of many real-world materials. The best model perfor-mane was obtained for leather. For instane the synthesised results for foil02 materialin Fig. 7.8 are almost visually indistinguishable from their original patterns. However,sine the overall mesostruture appearane is driven by underlying smooth MRF modelthe seletion of suitable synthesis is very important. Generally we an say, that the morestrutured texture is in the synthesised image the less notieable is the inuene of rangeinformation on �nal BTF image synthesis. This is apparent in 2D CAR model synthesisin Fig. 7.8 in omparison with GMRF model synthesis. Choosing the optimal model, i.e.,the orresponding set of parameters, have signi�ant inuene on MRF model stabilityduring synthesis of subspae images. Additionally, in some ases the MRF model pro-dues synthesised images ontaining artifats aused by simplifying ausality assumption(see last 3D CAR model synthesis in Fig. 7.8). This an be avoided by visual inspetionof all synthesised subspae images and using the set of model parameters produing stablesynthesis for all subspae images.



74 Chapter 7. Probabilisti BTF ModellingOriginal fabri02 BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, ombined with range data (next row)

2D CAR model synthesis, ombined with range data (next row)

3D CAR model synthesis, ombined with range data (next row)

Figure 7.7: Fabri02 synthesised BTF images obtained using proposed probabilisti BTF models:GMRF, 2D CAR and 3D CAR respetively ompared with orresponding raw BTF measurementsfor three distint illumination diretions. Range data were introdued into the models by meansof displaement mapping.



7.4: Results 75Original foil02 BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, ombined with range data (next row)

2D CAR model synthesis, ombined with range data (next row)

3D CAR model synthesis, ombined with range data (next row)

Figure 7.8: Foil02 synthesised BTF images obtained using proposed probabilisti BTF models:GMRF, 2D CAR and 3D CAR respetively ompared with orresponding raw BTF measurementsfor three distint illumination diretions. Range data were introdued into the models by meansof displaement mapping.



76 Chapter 7. Probabilisti BTF ModellingOriginal knitted wool BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, ombined with range data (next row)

2D CAR model synthesis, ombined with range data (next row)

3D CAR model synthesis, ombined with range data (next row)

Figure 7.9: Knitted wool synthesised BTF images obtained using proposed probabilisti BTFmodels: GMRF, 2D CAR and 3D CAR respetively ompared with orresponding raw BTF mea-surements for three distint illumination diretions. Range data were introdued into the modelsby means of displaement mapping.



7.4: Results 77Original ushion fabri BTF measurements �i = 60o; �i = 0o # �i = 60o; �i = 90o ! �i = 60o; �i = 180o Range-map
GMRF model synthesis, ombined with range data (next row)

Figure 7.10: Cushion fabri synthesised BTF images obtained using proposed probabilistiGMRF BTF model ompared with orresponding raw BTF measurements for three distint il-lumination diretions. Range data were introdued into the model by means of displaementmapping.7.4.2 Rough Texture Model from Spare Set of TexturesThe proposed rough texture model an be obtained from several or in extreme ase fromone texture image/images as illustrated in this setion. However, suh a simpli�ationstritly requires Lambertian surfae so only a limited group of materials an be repre-sented in this way otherwise the results will not orrespond to real material reetaneproperties. However, satisfatory rough textures synthesis an be obtained also for slightlynon-Lambertian surfaes as shown in ase of three di�erent kinds of leather from UTIAtexture database: white leather, snake leather and ushion leather. Fig. 7.11 shows threedi�erent synthesised rough texture images for di�erent light azimuth ompared with theoriginal texture for eah material, its range-map estimate and the 3D CAR model synthe-sis. Additionally, Fig. 7.12 depits sphere overed with two mentioned material (ushion,snake leather) to provide better demonstration of rough texturing. The rough mate-rial regular struture was introdued into the model by means of displaement mappingtehnique. The ultimate advantage of this model is option of rough texture synthesis ofarbitrary resolution from a spare set of BTF images or in the extreme ase from a singletexture image only. The range-map of all three example materials illustrated in Fig. 7.11was estimated from one image only by means of the shape from shading method desribedin Setion 5.2.2. The range map was further tiled to produe range image of arbitrary sizeso the �nal storage demands of suh a model are approximately 150KB inluding tiledrange-map and MRF model parameters.



78 Chapter 7. Probabilisti BTF Modellingmeasurement range-map 2D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

measurement range-map 3D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

measurement range-map 3D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

Figure 7.11: White, ushion and snake leather examples, orresponding estimated range-map,smooth 3D CAR synthesis and their BTF syntheti results rendered for illumination elevationangle �i = 60o and azimuth angles �i = 0o; 90o and 180o.
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Figure 7.12: Rough texture rendering example by means of bump mapping tehnique. Sphereovered by ushion leather (left) and snake leather (right).7.4.3 BTF on 3D ObjetsWe have tested the proposed probabilisti BTF models again on materials from BTFtexture database of the University of Bonn [98℄ suh as orduroy, upholstery, arpet,knitwear or leather textures and several UTIA BTF measurements. The resolution ofUniversity of Bonn BTF images (800 � 800) is satisfatory for parameters estimation ofproposed MRF models. As a 3D objet we used Meredes Class-C armrest (ourtesyof DaimlerChrysler). The resolution of synthesised texture mapped on this objet wasset to 512 � 512. To reprodue all visible struture details, the range and normal mapswere enlarged by means of image tiling method presented in [103℄. This method utsrange and normal tiles aording to sub-optimal path searh algorithm from raw rangeand normal maps estimates. These surfae height data are estimated using a photometristereo tehnique in resolution of original BTF measurements. Therefore only several smallimage tiles together with the tile index �le are stored taking about 100KB in averagedependently on struture of the material. The 3D objet is lit by single point-light soureand textures on eah polygon for given illumination and view diretion are result of BTFinterpolation between the losest BTF measurements available as is desribed in Setion4.2. Detail desription of illumination and view angles omputation for arbitrary senepolygon is given in Setion 4.1. Figures 7.13, 7.14, 7.15 and 7.16 illustrate the results of theproposed probabilisti MRF models for the individual BTF materials from the Universityof Bonn ompared with the original tiled data mapped on a ar armrest 3D model. Onean observe a slightly ompromised visual quality of the proposed modelling approahfor transluent and strongly non-Lambertian materials (e.g., fabris in Figures 7.14 and7.16). The regular rough struture in Fig. 7.13 was introdued into the model by meansof the parallax bump-mapping (see Setion 4.3.1). The results of proposed probabilistiBTF modelling approah with underlying 2D CAR model mapped on ar gearbox areompared with original tiled BTF data and with results of proposed one-lobe reetanemodel (PLM-C) in Figs. 9.2 and 9.3.Note that the shown examples of synthesised BTFs are brighter than their original
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Figure 7.13: Original BTF on ar armrest for wood01 and wood02 materials (�rst rows) omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respetively. Regular surfae strutureintrodued by means of bump mapping.
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Figure 7.14: Original BTF on ar armrest for fabri01 and fabri02 materials (�rst rows) om-pared with results of GMRF, 2D CAR and 3D CAR BTF models respetively. Regular surfaestruture introdued by means of bump mapping.
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Figure 7.15: Original BTF on ar armrest for foil01 and foil02 materials (�rst rows) omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respetively. Regular surfae strutureintrodued by means of bump mapping.
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Figure 7.16: Original BTF on ar armrest for leather02 and wool materials (�rst rows) omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respetively. Regular surfae strutureintrodued by means of bump mapping.



84 Chapter 7. Probabilisti BTF Modellingounterpart (�rst row). This is aused by additional ambient lighting whih was neessaryfor bump mapping to work. The original tiled BTF data in the �rst row are interpolatedon individual polygons without any additional lighting whih is, however, important toprodue shadows of objets in sene et.The omparison of smooth texture, only enhaned by bump mapping, with resultsof the proposed 3D MRF BTF model for all eight tested materials is shown in FiguresA.1 and A.2. The �rst olumn shows ombination of smooth albedo texture ombinedwith bump mapping only while the seond and third olumns represent the proposed BTFsynthesis mapped on a ylinder and lit from two distint positions.7.5 MRF BTF Model Fast Implementation IssuesThe fast implementation of the synthesis part of the proposed BTF model based on un-derlying MRF model an be performed with hardware support of ontemporary low-endgraphis ard. This equipment enable to run user de�ned fragment and vertex programsdiretly in GPU avoiding bandwidth problems aused by huge data transfer between GPUand CPU and enabling signi�ant inrease of omputational performane.The most appropriate andidate for suh an implementation from MRF BTF modelspresented in this hapter is the BTF model with underlying 2D CAR texture model. Thisapproah enables fatorisation of subspae synthesis into synthesis of individual monospe-tral planes. The synthesis of remaining models requires either relatively slow FFT (GMRFmodel) or involves simultaneous evaluation of high number of models parameters (3D CARmodel).A fast hardware implementation of hosen 2D CAR BTF model requires three mainsteps. The �rst one is synthesis of individual subspae images, the seond one is interpo-lation of synthesised images with respet to atual view and illumination diretion whilethe third step handles the bump-mapping of a rough material struture.7.5.1 Synthesis of BTF Subspae ImagesThe synthesis of subspae images requires several operations to be performed for eahindividual image plane. The �rst one is subsequent image generation aording to the 2DCAR model parameters with respet to a white-noise generator. In this way all layersof multiresolution pyramid (at most 3) are generated and �nally blended together. Thenoise generator an be represented by means of the oat-point texture for �xed image-size appliations or it an be implemented in GPU as well. Finally, every vetor of RGBpixels of eah subspae image is multiplied by the inverse Karhunen-Loeve 3 � 3 matrixto preserve original olour orrelations. Aording to the shema in Fig. 7.17, the inputof the fragment CG program for one subspae image reonstrution is a set of the CARmodel parametri vetors of the length 3 and the inverse K-L matrix of size 3 � 3. Theusual number of model parameter vetors np varies between 6 and 18 depending on thesize of model's ontextual neighbourhood. The output of the program is the synthetiolour BTF image.All these omputations an be eÆiently performed using CG fragment programs andrendering-to-texture tehnique taking advane of ontemporary graphis hardware. TheCPU synthesis of all subspae images takes at most several seonds in average on Athlon1.9GHz as shown in Tab. 7.1. Obviously any hardware implementation an onsiderably



7.5: MRF BTF Model Fast Implementation Issues 85Table 7.1: The synthesis time of 15 BTF subspae images (512�512) using proposed MRF BTFmodels on Athlon 1.9GHz.No. of G-L pyramid planes / CN size 3D CAR 2D CAR GMRF1 / 2 5.9 s 3.3 s 16.2 s3 / 2 8.0 s 3.9 s 19.4 sspeed up this proess to enable synthesis at interative frame rates. Subspae synthesis
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1...n Figure 7.17: Fast subspae synthesis sheme.is performed only one for the �rst time when the orresponding material appears onthe sene so this part does not later require any additional omputation during an onlinerendering. So the numerial eÆieny of whole rendering depends mainly on the eÆienyof following two implementation steps and on GPU attributes.7.5.2 BTF InterpolationDue to relatively sparse measurement of the original BTF data spae, the replaementof unmeasured BTF data with the nearest available illumination and view diretions of-ten produes signi�ant seams visible on the surfae of textured objet. This problemours when the BTF data are used either for raw data mapping or learning the BTFtexture synthesis model aording to the luster index. These artifats were onsiderablysuppressed when an interpolation sheme based on baryentri oordinates was applied(see Setion 4.2). The three losest BTF measurements, in sense of vetor Eulidean dis-tane on hemisphere, ontaining individual measurements points are found for the givenview and illumination diretions. The resulting baryentri weights are omputed for boththree losest view and illumination diretions. By multipliation of view and illuminationweights we obtain the nine weights orresponding to nine synthesised images whih arepiked up with respet to luster index �le and ombined by means of multitexturing orfragment programs.7.5.3 Surfae Height SimulationThere are variety on bump-mapping GPU implementations presented so far. In our asewe have used the parallax bump mapping presented in [118℄. This method enables fastbump-mapping e�ets by means of simple vertex and fragment programs. It approximatesorret appearane of rough surfaes by modifying the texture oordinate for eah pixelwith no extra polygon requirements using only surfae range a normal maps. These maps



86 Chapter 7. Probabilisti BTF Modellingare obtained from BTF measurements using the photometri stereo (see Setion 5.2.3)and arbitrarily enlarged by image-tiling tehnique omputed in aordane with [103℄ (seeSetion 8.3.1). Thus only a few range/normal-map tiles have to be stored together withthe orresponding tile-index.



Chapter 8BTF Modelling Using ReetaneModelsReetane models are mostly introdued as parametri funtions representing amount ofenergy reeted by a material dependently on illumination and view diretion with respetto a surfae normal (see Fig. 2.2). If we are able to �t a parameters of suh a model to allharateristi features of the original material reetane and if they are �tted orretly,then the model an produe reetane values whih are indisernible from those of theoriginal material.The simplest reetane model is the Lambertian model, representing material withonstant reetane funtion for arbitrary view diretion. Unfortunately suh assumptionfor most of the materials does not hold due to their variable reetane values for di�erentview diretions. Several reetane models have been applied in the omputer graphis inthe past. These models are disussed in Chapter 2.Most of BRDF models presented in Chapter 2 an be extended to BTF modellingusing dediated pixel-wise BRDF (i.e., ABRDF) models for eah planar BTF positions.Thus in this ase modelling of the BTF image for a given illumination and view diretiononsists of pixel-wise omputation of the orresponding reetane values from the modelparameters estimated in a preeding o�ine phase.For the purpose of fast BRDF rendering in graphis hardware the Lafortune model[63℄ beame popular, beause it enables relative easy and fast evaluation, ompat BRDFrepresentation and physial plausibility.8.1 Lafortune ModelMonospetral BRDF is a four-dimensional funtion depending on a loal viewing (!v) andillumination (!i) diretion where!i(�i; �i) = 264 os �i os�ios �i sin�isin �i 375T = 264 uxuyuz 375T ; !v(�v; �v) = 264 os �v os�vos �v sin�vsin �v 375T = 264 vxvyvz 375T :(8.1)For multispetral modelling three di�erent BRDFs are used for the individual spetralhannels. BRDF usually represented as a 4D table involves storing large amount of dataso some way of BRDF spae parametrisation is inevitable.87



88 Chapter 8. BTF Modelling Using Reetane ModelsFor parametrisation of BRDF in the sope of this thesis we have developed the gen-eralisation of Lafortune reetane model beause of its eÆient and ompat reetanerepresentation. Moreover, the simpliity of this model enables its appliation in real-timerendering algorithms implemented diretly in ontemporary graphis hardware.The Lafortune model [63℄ provides a physially orret BRDF approximation using setof reetane lobes. The model is a generalisation of the original osine model:Yi;v = �K osn � (8.2)where � is the angle between the view diretion !v and the mirror diretion of the illumi-nation diretion !i, denoted by !m and K is the normalisation fator enforing maximumlobe albedo � into a value between 0 and 1. The osine part of the model an be writtenas a dot produt Yi;v = �K[!m!v℄n (8.3)and the mirroring around the normal n an be written using a Householder matrixYi;v = �K[!Ti (2nnT � I)!v℄n : (8.4)The model an be generalised by replaing the Householder matrix and normalisationfator K by a general 3� 3 matrix M aording toYi;v = �[!Ti M!v℄n : (8.5)In order to obtain the reiproal reetane funtion (the same reetane value if positionsof light and amera are swapped) the matrix has to be symmetrial M = MT . Whena singular value deomposition of matrix M is applied we obtain QTDQ where Q istransformation matrix into the new orthogonal oordinate system. In this new systemthe matrix M simpli�es to the diagonal matrix D. In this situation the axes are alignedto the normal and to the prinipal diretions of anisotropy. The diagonal matrix an beassumed to be omposed of the weights of individual terms of the dot-produt !i � !v asit is shown in the following statement of the Lafortune reetane model:Yi;v = �[!Ti D!v℄n = �(Dxuxvx +Dyuyvy +Dzuzvz)n : (8.6)The model an be extended to nl reetane lobes to be able to �t the omplex reetanefuntions as followsYi;v = nlXk=1�k[!Ti Dk!v℄n = nlXk=1 �k(Dx;kuxvx +Dy;kuyvy +Dz;kuzvz)nk : (8.7)The representation using this model (8.7) is ompat and relatively memory eÆient sineeah reetane lobe is determined by means of only �ve parameters �;Dx;Dy;Dz; n. Themodel is able to handle noisy data and even in ase when data are sparse the modelprovides their orret interpolation. The obtained reetane funtions are physiallyplausible, inherently reiproal and they satisfy the rule of energy-onservation. Moreover,the individual spetral hannels of reetane data an be modelled separately.These properties and the simpliity make this model suitable for the fast BTF renderingalgorithms implementable diretly in graphis hardware. The following setion explainsthe way of employing of the desribed Lafortune model for this task.



8.2: Sample-Size Lafortune BTF Model 898.2 Sample-Size Lafortune BTF ModelMonospetral BTF is a six-dimensional funtion whose orret modelling involves eithervery omplex and omputationally demanding model or some kind of data fatorisationinto lower-dimensional data spaes where simpler models an be used. Atually, thesix-dimensional BTF an be onsidered a spatially varying four-dimensional \apparent"BRDF (ABRDF). This fat enables the modelling of these per-pixel ABRDFs by dediatedLafortune models as proved in [75℄, [19℄ and [78℄. If all measured reetane values areused as input data for a BRDF model (see [75℄ and [59℄) then the results are unsatisfatoryespeially in the ase of rough textures. The reason for this is a self-olusion e�et inBTF images of a rough materials where some parts of the material are oluded espeiallyfor high grazing angles and as a result individual pixels in the reti�ed BTF images do notorrespond to the unique planar position on the material surfae. Therefore the only wayto obtain a real pixel-wise registration of BRDFs is to model only the individual reetane�eld R, i.e., ni images taken for a �xed view and varying illumination diretion. So foreah of nv reetane �elds Rv the parameters of the Lafortune model are omputed forevery BTF planar position. This proedure is done separately for all RGB olour hannels.As the parameter omputation is independent of the view diretion !v (whih is �xed fora given reetane �eld) the model equation beomesYi;v(r) = nlXk=1 �v;k(r)[!Ti Dv;k(r)℄nv;k(r) = (8.8)= nlXk=1 �v;k(r)(Dv;x;k(r)ux +Dv;y;k(r)uy +Dv;z;k(r)uz)nv;k(r) ; (8.9)(8.10)where !i(�i; �i) = [ux; uy; uz ℄T is a unit vetor pointing to light and parametrised bythe illumination elevation and azimuthal angles [�i; �i℄ respetively (see Fig. 2.2). Asa reetane data the set of pixels Rv(r1; r2; r3; !i) is onsidered, where i = 1; :::; ni is theillumination position index and v is the atual view position index ranging from 1 to nv.A multiindex r = fr1; r2; r3g represents the planar horizontal, vertial and spetral indexin the BTF image respetively.The individual olour reetane �elds Rv are represented by means of nl sets of �veoating point parametri images orresponding to the model parameters �;Dx;Dy;Dz ; nrespetively. This is still relative large amount of data in omparison with the 81 originalimages partiularly when more than one reetane lobe is used. In addition the parameter�tting for several lobes is underonstrained, time onsuming problem and as a resultthe estimation is often numerially unstable. For these reasons we deided to use onlysimpli�ed one-lobe variant of the Lafortune reetane model (LM):Yi;v(r) = �v(r)[!Ti Dv(r)℄n(r) = �v(r)(Dv;x(r)ux +Dv;y(r)uy +Dv;z(r)uz)n(r) (8.11)The representation of BTF by means of one-lobe LM with �ve parameters involvesstoring of 5� nv = 405 oating point olour parametri images instead of 81� 81 = 6561original BTF images.



90 Chapter 8. BTF Modelling Using Reetane Models8.2.1 Non-Linear Estimation of Model ParametersFor every planar position (r1; r2) in the estimated BTF image one model is used, so foreah view diretion from the BTF database we have to estimate N �N models for eahspetral hannel. The model parameters are estimated using Levenberg-Marquardt non-linear estimation tehnique as desribed in [94℄. The Levenberg-Marquardt method isa \single-shot" method whih attempts to �nd the loal �t-statisti minimum nearestto the initialising point. Its prinipal advantage is that it uses information about the�rst and seond derivatives of the �t-statisti as a funtion of the estimated parametervalues to guess the loation of the �t-statisti minimum. It will not work reasonably wellwith omplex statisti surfaes. Apart from that there is no guarantee to �nd the global�t-statisti minimum.In pratial experiments inluding estimation of model parameters for every view dire-tion ontained in the BTF database, it turned out that the �tting quality of the optimisedmodel parameters strongly depends on their initial value. When the initial values weremanually tuned and �xed for all omputed models then in the estimated BTF imagesappeared isolated dots with ompletely di�erent spetral values than those expeted fromthe original. This situation is illustrated in Fig. 8.1-b in omparison with the original BTFimage Fig. 8.1-a. To overome this problem the parameter estimation proess was splitin two separate steps. In the �rst step the parameters of the model are �tted to manuallytuned initial values. The orret initial values for the following seond estimation stepare �nally obtained as median of parameter values over all models in Rv. Results of suha orret parameter initialisation is depited in Fig. 8.1-.
a) b) ) a) b) )Figure 8.1: Example how the improper initial values of model parameters inuene the restoredBTF image quality for two di�erent materials. The �rst image is an original (a), the seond oneis a result based on the estimated model parameters with wrong initial values (b) and the thirdimage illustrates the result with the orretly set initial values ().8.2.2 Proposed Polynomial Extension of the Lafortune ModelThe one-lobe Lafortune model needs to store onsiderably lower number of parametersthan the nl-lobes model. However, one an assume that the performane of suh a sim-pli�ed model on reetane data would not be satisfatory. In our experiments testing itbeame obvious that the reetane funtion approximation by one-lobe LM is erroneousespeially in ases of omplex BRDF when the reetane values strongly depend on theillumination diretion. This situation is most apparent at higher grazing angles when thelight shines from diretion opposite to amera whih auses signi�ant speular ree-tions. The problem of one-lobe LM �tting to original data is illustrated in Fig. 8.2. Weomputed BRDF for BTF images of knitted wool material from Rv � �v = 60o; �v = 54oas an average RGB value in a window of size 20 � 20 (solid line) and ompared it with



8.2: Sample-Size Lafortune BTF Model 91BRDF obtained in the same way from estimated BTF images orresponding to the sameRv (dashed line). From the results we onlude that the used one-lobe model is not ableto follow suh steep hanges of reetane funtion, whih are present in almost all naturalmaterials. The signi�ane of this one-lobe model error onsiderably depends on prop-erties of individual material sample and on the atual viewing diretion. Generalisation
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92 Chapter 8. BTF Modelling Using Reetane Modelsimage. From these histograms we ompute the umulative histograms. These histogramsrepresent the inputs of the algorithm Alg. 4 whih omputes the oeÆients for the poly-nomial mapping of graysale levels of the LM estimated image to the original one. Thealgorithm is based on histogram mathing of both images so that the histogram of the LMestimated image is �tted with respet to the original BTF image. The resulting mappingbetween both umulative histograms is approximated by polynomial using least squares�tting sheme.The resulting polynomial oeÆients ar3;v;i;j are stored for individual olour hannelsof every BTF image. The proposed polynomial extension of the one-lobe Lafortune model(PLM) using oeÆients ar3;v;i;j an be desribed by following equation~Yi;v(r) =Mr3;v;i(Yi;v(r)) = npXj=0 ar3;v;i;jYi;v(r)j (8.12)whih results in a novel model expressed by the following formula:~Yi;v(r) = npXj=0ar3;v;i;j[�v(r)(!Ti Dv(r))nv(r)℄j : (8.13)Here ar3;v;i;j are polynomial parameters speifying the mapping funtionMr3;v;i betweenthe histogram values of the image Yi;v(r) (synthesised from one-lobe model parameters)and the original BTF image and (np � 1) is a rank of this polynomial. The parametersar3;v;i;j are estimated by least squares �tting on the original 8 bits quantised mappingfuntion. We obtained satisfatory results already with np = 5.Algorithm 4: Mapping funtion oeÆients omputation1. Input: Cumulative histograms of the original BTF image and its one-lobe LMestimate2. i = 0; j = 03. WHILE (j � 255)(a) WHILE (histCumuLM [i℄ � histCumuOrig[j℄)i. M[i℄ = jii. i = i+ 1(b) j = j + 14. Fit 5-order polynomial toM using Least Squares method.5. Output: Polynomial oeÆients aj ; j = 0 : : : np representing mapping funtionM.Finally for eah BTF image we have to store �fteen additional oat polynomial parameters(�ve oat numbers for eah olour hannel). The number of these parameters storedwithin eah BTF image is negligible in omparison to the number of one-lobe Lafortune



8.2: Sample-Size Lafortune BTF Model 93model parameters stored for eah image pixel. The extended model involves only severaladditional linear operations whih an be possibly implemented in ontemporary graphialhardware. Moreover, the results of the proposed polynomial extension of one-lobe modelare enouraging as it is shown, e.g., in the shape of reetane lobe whih is omparedwith original measured BRDF lobe and lobe estimated by one-lobe model only in pixel(r1 = 13; r2 = 3) of knitted wool as illustrated in Fig. 8.4. More thorough omparison ofmodel performane is provided in the following setions.
a) b) )Figure 8.4: Reetane lobes in pixel (r1 = 13; r2 = 3) of knitted wool and illumination angles�i = 75o; �i = 54o. Original reetane lobe (a), approximated by the one-lobe LM (b) and by theproposed PLM ().8.2.3 Results of Sample-Size Reetane ModelsIn order to verify the onsidered reetane models we performed extensive experimentsusing eight BTFs provided by University of Bonn [98℄. The LM parametri images wereestimated for all 81 surfae reetane �elds Rv; v = 1 : : : nv as well as the polynomialoeÆients orresponding to the histogram mathing mapping funtionsMr3;v;i. All BTFimages were synthesised by means of the estimated parameters. For all materials thesynthesised BTF images based on the one-lobe LM were ompared with the BTF synthesisusing the proposed PLM.For the sake of the BTF results omparison the standard mean average error (MAE)between original data (Y ) and estimated data (Ŷ ) was used (8.14).The mean average error for one BTF image is given byEv(i) = 1255� X8r1;r2;r32Y jY (r1; r2; r3; v; i) � Ŷ (r1; r2; r3; v; i)j; (8.14)where r1; r2; r3 represent the planar horizontal, vertial and spetral index respetively inBTF the image with resolution � = Nx � Ny and i is the illumination position index inRv. For omputation of the average error for all estimated images from Rv we used theformula Ev = 1ni niXi=1 Ev(i) ; (8.15)where ni is the number of images inluded in Rv.Graphs in Fig. 8.5 demonstrate the performane in terms of MAE for both methods(LM depited as blue urve and PLM depited as red urve) on the whole BTF, i.e., for all81 reetane �eldsRv along x axis, for eight di�erent materials from the Bonn UniversityBTF database. Individual reetane �elds are ordered aording to amera positionirular movement from top to bottom of a hemisphere above the observed material as
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Figure 8.5: The mean average error (MAE) (aording the equation (8.15)) of one-lobe lafortunemodel (LM { blue line) and its polynomial extension (PLM { red line) for all 81 reetane �eldsof eight di�erent BTFs: fabri01, fabri02, foil01, foil02, wool, leather02, wood01 and wood02respetively.



8.2: Sample-Size Lafortune BTF Model 95illustrated in Fig. 2.3. Similarly, the overall MAE errors omputed as average value of Evfor all reetane �elds and spetral hannels of individual BTFs are �gured in Tab. 8.1.From the �rst two olumns of the table it is apparent that the proposed polynomialextension of one-lobe Lafortune model (PLM) yields onsiderably lower MAE values inomparison with one-lobe model. At the same time, the storage spae required by theproposed model is maximally 5% higher in omparison with one-lobe Lafortune model.This small inrease is aused by storing of �fteen additional polynomial oeÆients forevery BTF image.Table 8.1: The MAE (aording to the equation 8.15) of the synthesised BTFs for one-lobeLafortune model (LM), its polynomial extension (PLM) and lustered polynomial extension (PLM-C) for di�erent materials. Mean Average Errormaterial LM PLM PLM-Cwool 0.058 0.037 0.038proposte 0.054 0.052 -fabri01 0.058 0.036 0.038fabri02 0.053 0.032 0.033foil01 0.067 0.021 0.023foil02 0.048 0.020 0.023leather02 0.032 0.018 0.021wood01 0.047 0.030 0.031wood02 0.058 0.035 0.038Fig. 8.6 shows the results for several BTF images from two di�erent reetane �eldsRv. The upper row represents the original BTF images, the middle row shows the orre-sponding synthesised images by means of one-lobe LM while the bottom row representsthe results of the proposed PLM.From these images it is apparent that the proposed method o�ers both better approx-imation of olour hues than one-lobe LM and inreased ontrast of the estimated BTFimages. This is due to strething the histograms whih results in the inreased ontrast,i.e., the inreased distane of individual olour levels. This makes possible to reognise,e.g., two neighbouring olour levels pereived as one olour hue in one-lobe LM. The nextappliation example of the proposed model is given in Fig. 8.7. The �gure shows how theaveraged BRDF omputed by the proposed polynomial extension (dash-dot line) followsthe original average BRDF (solid line) for reetane �eld Rv � �v = 60o; �v = 54o ofthe knitted wool material. From the �gure it is apparent that the original BRDF data�tting based on the proposed method is muh more aurate in omparison with theunsatisfatory results of the one-lobe Lafortune model.8.2.4 Compression of Lafortune Parametri ImagesUsing the polynomial extension of Lafortune model desribed above we were able to ahievethe maximal ompression ratio of a real BTF data about 120 depending on the resolutionof parametri images. Unfortunately even this ompression implies the neessity to store



96 Chapter 8. BTF Modelling Using Reetane ModelsRv � �v = 60o; �v = 54o Rv � �v = 75o; �v = 60o Rv � �v = 60o; �v = 54o Rv � �v = 75o ; �v = 60o����a q ����aq ����a q ����a q ����aq ����a q ����a q ����aq ����a q ����a q ����aq ����a q
Figure 8.6: Synthesised BTF examples for knitted wool and proposte materials respetively. The�rst row desribes mutual position of light (empty irle) and amera (�lled irle) above thesample, the seond row shows original raw BTF data. The third row shows results of one-lobe LMon registered BTF data and �nally the fourth row illustrates results of proposed PLM.
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8.2: Sample-Size Lafortune BTF Model 97tation purposes the omputationally reasonable number is less than 1000.The whole LM parameter segmentation proedure works as follows. At the beginningthe K-means segmentation algorithm (Alg. 3 in Setion 6.1.4) is employed using pixelsfrom all 81 images orresponding to atual reetane �eld Rv as data features. Note thatthe segmentation annot be performed on the model parametri feature spae ontainingdiretly model parameters as these individual parameters have strong non-linear impaton the restored pixel value and any general weights annot be attahed to them.The K-means segmentation proess is omputationally very demanding and the seg-mentation of relatively small parametri images of resolution 256�256 for all 81 reetane�elds takes several hours. The segmentation an be signi�antly speed up for example bymeans of modi�ed K-means algorithm desribed in [61℄. This method exploits randomsampling and enable time omplexity linear in the size of the input.During model synthesis in a partiular pixel the orresponding luster with the modelparameters is obtained aording to number at pixel oordinates in luster index look-up �le. These model parameters are found for eah olour hannel and the pixel value is�gured out. Using this approah the storage size of model parameters redues onsiderablysine only one olour parametri look-up image and several luster parameters have to bestored.Choosing the Reetane Field SubsetUnfortunately the size of pixel reetane data features (3�81) is too big for segmentationof large parametri images whih results to many hours of omputation for eah reetane�eld. To avoid this exhaustive omputational demands only a onstrained set of imagesfrom those 81 in reetane �eld are inluded into a data feature vetor. To hoose anappropriate subset of images bearing the most information of whole set we used an algo-rithm based on the Kullbak-Leiber distane [60℄ of two di�erent histogram distributionsP;Q dKL(P;Q) = 256Xi=1 P (i) log P (i)Q(i) : (8.16)However, the Kullbak-Leiber divergene is non-symmetri and it is sensitive to histogrambinning. For this reason we have used its modi�ation alled Je�rey divergene [95℄ whihis represented by the following equationdJ(P;Q) = 256Xi=1�P (i) log P (i)M(i) +Q(i) log Q(i)M(i)� (8.17)whereM(i) = P (i)+Q(i)2 . This divergene is numerially stable, symmetri and robust withrespet to noise and the size of histograms bins in omparison with previous one.The algorithm hoosing a subset of the most di�erent images (nmax) from reetane�eld Rv is desribed in Alg. 5. Basially a new image for the subset S is taken as animage with the minimal distane dJ to all images already inluded in S.BTF Image SynthesisWhen the segmentation is �nished we obtain luster indies Iv(r1; r2; r3) for the individualolour spetra r3 of eah reetane �eld Rv. Cluster indies are stored in form of olour



98 Chapter 8. BTF Modelling Using Reetane ModelsAlgorithm 5: Choosing a subset S of nmax images from the reetane �eld Rv1. Compute normalised histograms Hi; i = 1; : : : : ; 81 for all 81 images.2. Add �rst image orresponding to (�i = 0o; �i = 0o) into S.3. FOR n= 1 ! nmax(a) Compute minimal Je�rey divergene for all images in S to all 81 images inreetane �eld R and hoose suh j�-th image histogram from R for whihthe omputed divergene is maximal:j� = argj � maxi=1;:::;n � minj=1;:::;81 dJ(Hi;Hj)��(b) Add j�-th image into S.4. From nmax images ontained in S are built up the data features for segmentation.
images of original parameter images resolution, i.e., in eah olour hannel we store theorresponding luster index. An important produt of segmentation is the table ontainingindividual luster enters Kv() where  is the luster index. For eah luster �ve LMparameters are stored for individual olour hannel. The number of these lusters in ourimplementation was �xed to 256 for all olour hannels.The �nal synthesis is straightforward. The parameters �;DX ;DY ;DY and n of theoriginal model (8.19) are omputed as�(r)v = Kv;1(Iv(r)) (8.18)D(r)v;X = Kv;2(Iv(r))D(r)v;Y = Kv;3(Iv(r))D(r)v;Z = Kv;4(Iv(r))n(r)v = Kv;5(Iv(r)) :When the parameters are known the omputation of the polynomial expansion of Lafortunemodel is the same aording to the equationŶi;v(r) = npXj=0 ar3;v;i;j[�v(r)(!Ti Dv(r))nv(r)℄j : (8.19)We refer to this lustered polynomial extension of the Lafortune Reetane model asPLM-C in the following text. The synthesis based on the desribed approah is quitefast, requiring the look-up index tables only whih an be implemented using standardOpenGL features. Besides, the storage size of LM parameters is redued onsiderably as it



8.3: Unrestrited Resolution BTF Reetane Model 99is �gured out in the �fth olumn of Tab. 8.2. Thus by means of this method we are able toahieve the average BTF data ompression ratio more than 1100 , while the omputationalexpenses are almost the same. Moreover, the graphial hardware an take advane ofthis ompat model size to redue the amount of data loaded to GPU memory. Thisadvantage may beome more apparent primarily for VR senes ontaining objets overedwith many di�erent materials whih appear and disappear during sene observation. Theaverage MAE for all reetane �elds of PLM-C remains almost on the same level as fornon-lustered variant of PLM as it is apparent from the last olumn in Tab. 8.1.8.2.5 BTF Data InterpolationChapter 4 desribes the basi approahes onerning BTF rendering and interpolation.As it was mentioned the orret raw BTF interpolation involves at least nine BTF imageswhih orrespond to permutation of three di�erent view and three di�erent illuminationpositions. The proposed polynomial extension of Lafortune reetane model have thesame requirements sine the polynomial �tting is performed aording to angular resolu-tion of the BTF data set. However, the nature of Lafortune model enables to omputethe reetane smoothly for arbitrary illumination position. To take advantage of thissmooth property of the proposed model the mapping funtions omputed for given illumi-nation and view angles have to be properly interpolated with respet to atual illuminationposition. For the sake of this interpolation we utilised baryentri oordinates as interpo-lation weights between the three losest illumination positions. The baryentri weightsare obtained proportionally to triangle areas using the method desribed in Chapter 4.Additionally, interpolation of the orresponding mapping funtions enables us to use onlythree di�erent BTF images (orresponding to the three losest view positions) for �nalinterpolation so the whole BTF rendering speeds up three times. In Fig. 8.8 is shown anexample of rendering of wood02 material using all nine images (left) in ontrast with thethree images interpolation only (right). There is an obvious di�erene between these twoimages espeially for high elevation illumination angles (i.e., ti > 75o) where the texturebeomes darker due to inorret interpolation. The reason for these problems is interpo-lation of those angles whih do not orrespond to the atual illumination position. Thusthe BTF extrapolation for higher elevation illumination angles would be more appropri-ate approah. An overview of results of view angles interpolation for all tested materialsompared to original BTF data is given in Fig. B.1.8.3 Unrestrited Resolution BTF Reetane ModelThe size of the raw BTF measurement is always onstrained by the size of material sampleand by the resolution of the measurement devie. However, to over large objets in VR themethod for BTF enlargement is neessary. There are several methods on this topi avail-able mainly in omputer graphis. One of them is based on intelligent sampling tehnique[70℄, whih produes synthesised BTF images aording to spei� samples from sparse setof original BTF measurements in ombination with syntheti image obtained by means ofa range-map. The seond approah ombines texture-synthesis using mathematial mod-els based either on Gaussian-Markov random �elds [36℄ or on multi-dimensional ausalauto-regressive model [38℄ of the original BTF image with estimated range-map. Themost often approahes to BTF enlargement are based on di�erent extensions of intelligent
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Figure 8.8: BTF data interpolation using the proposed PML model of wood02 material. Full9-images interpolation of both view and illumination position (left) and 3-images interpolation ofview position only (right).sampling tehniques [24, 25, 11, 62, 85℄. These methods produe set of image/parametritiles and the resulted image is obtained as a ombination of these tiles. In the ontext ofthis thesis two approahes are suggested:� Image tiling based on generation of set of LM parametri tiles. The large imageis a simple ombination of these tiles ful�lling ertain onstraints. This methodannot produe olour values not present in the original image and annot reproduetexture elements with lower spatial frequenies than those orresponding to the tileresolution.� Image modelling based on Markov random �eld (MRF) models. These modelsmay generate texture image of arbitrary size while only few parameters have tobe stored. On the other hand a quality of these models an be ompromised inomparison with image tiling mainly for materials with regular pattern whih annotbe easily reprodued by means of these stohasti-based models.Both these methods an be extended to enable the enlargement of reetane model pa-rameters instead of ordinary olour image as it is explained in Setions 8.3.1 and 8.3.2.8.3.1 Reetane Model Parametri-Plane TilingSome form of tiling the model parameter planes is inevitable when a large objet is tobe overed by BTF. A simple seamless one-tile repetition does not provide satisfatoryresults mainly for non-regular textures where ertain pattern ours on the same positionsubsequently. Thus to obtain more realisti results we need more than one tile per textureto support the visual variability of generated images. There is a variety of image-basedtexture synthesis methods published reently [24, 11℄. In this thesis we use the imagetiling method based on the image stithing introdued in [103℄. The idea of stithing isbased on the minimum error boundary ut, as used in the image quilting algorithm [24℄.The stithing proedure is demonstrated in Fig. 8.9.Let us assume that eah oriented stith is reated between two equally sized overlappingimage regions: a soure and a target. Creating suh stith an be imagined as attahinga ropped part of soure to target (Fig. 8.9). To make the transition between two imagesas invisible as possible the soure (i.e., the tile surrounding) is ropped from along the
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Figure 8.12: Path reation. the stithing teh-nique is used to reate sides and orners of thepath.be avoided (as demonstrated in simple stith in Fig. 8.11). Therefore the authors de�nedthe adaptive boundary blending (Fig. 8.11) to redue the visibility of suh unwantedhigh-error artifats. The idea is to interpolate between the overlapped soure region tothe target with a loally adjusted intensity while utilising the minimum error path. Theadaptive blending proess an be visualised using the blend intensity and blend olour-maps separately. The boundary an be made almost unnotieable in this way, exept ofases when the transition is made between prinipally inompatible texture image areas.The previously desribed image stithing method an be extended to transfer generalontinuous image regions while keeping the transition between the old and new unnotie-able. During tile generation the algorithm searhes for suh a retangular region in thesoure texture image, where the opposite border areas are the most visually onsistentin both the horizontal and vertial diretions. As a riterion of visual onsisteny it isused RGB Eulidean distane. New tiles an be obtained using the desribed pathingtehnique with respet to Fig. 8.12. New tiles an be reated by making a opy of thetemplate tile and subsequently overing its inner area by pathes taken from di�erent po-sitions in the soure texture image. Example image synthesis of the desribed method isshown in Fig. 8.13.

Figure 8.13: Example of tiling using the desribed method. Ten original tiles were used toprodue synthesised image of leather02 and wood02 materials.However, BTF tiling is muh more omplex task as the stith should appear onsistentin all BTF planes. To derease the omputational omplexity of suh an extensive data



8.3: Unrestrited Resolution BTF Reetane Model 103proessing we adopted a two-stage tiling proess. In the �rst stage we only determine thestithing and other parameters to be used later for atual tile reation. For this purposeonly a few sample parametri images are taken (prepared in full size, i.e., 800�800 pixels)to represent di�erent azimuthal and elevation view positions. The optimal stithing pathsare found in this subset of parametri images by means of the method desribed in [103℄.In the seond stage the omplete raw BTF data are proessed using the pre-omputedstithing parameters. One all tiles beome available, the �nal parameters of the proposedLafortune model are omputed based on the BTF tiles. This proedure saves onsiderableomputational demands of Lafortune parameters estimation algorithm. For the sake ofthe synthesised BTF rendering quality the number of omputed tiles used is usually morethan one. In this thesis the maximal number of omputed tiles is ten what we foundto be a reasonable ompromise between the omputational omplexity and quality of theoutput.The time omplexity an be desribed as follows. Preparation (estimation) of sampleLafortune parametri planes in original BTF resolution to be used in the �rst tiling stagetakes about 1 hour. The �rst tile reation stage (stithing parameters learning) takesusually less than 1 hour. The seond stage, i.e., utting the omplete raw BTF datato obtain raw data tiles based on the �rst-stage-parameters takes 3-5 hours, mainly dueto lots of slow data aess operations involving thousands of �les. The �nal non-linearestimation of one-lobe Lafortune model parameters for ten di�erent BTF image tiles of size64�64 for all 81 reetane �elds omprised in the BTF database takes about 10 hours.Note that if more reetane lobes were used the time required for parameter �tting wouldonsiderably inrease a thus the storage spae for these parameters would be muh morelarger.The time omplexity mentioned above strongly depends on the BTF image size andomputational power involved. We used the BTF dataset from Bonn University of size800 � 800 pixels and omputer PC Athlon 1.9GHz.ResultsFig. 8.14 shows the error urves (MAE) for individual test materials. For eah material theMAE is omputed for all 81 view positions Rv (depited on x axis) of lustered one-lobeLafortune model (LM-C, blue solid line) and its lustered polynomial extension (PLM-C,red solid line) are ompared with the orresponding non-lustered variants of LM andPLM (both depited as dash-dot line). The overall MAE values of all tested materialswere omputed as averaged MAE of all reetane �elds and are are shown in Tab. 8.1in ontrast to the orresponding values of non-lustered PLM. The MAE for PLM-C isslightly higher in omparison with PLM but this higher error is well ounterbalaned bythe model size. The number of parameters to be stored have been redued using proposedparameter lustering at least ten times in ontrast to the non-lustered PLM as it is evidentfrom the last olumn of Tab. 8.2. The tile resolutions for individual materials are listed inthis table as well. Generally, the less homogeneous is the material appearane the largerimage tiles are required for proper reprodution of the material harateristis.Finally for subjetive visual omparison of results we used the same 3D objet aspreviously. This ar armrest is overed by di�erent BTFs generated using the proposedlustered PLM-C and it is ompared with the non-lustered PLM as well as with the rawtiled BTF as it is illustrated in Fig. 8.15. The �rst olumn shows the objet overed by
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Figure 8.14: The mean average error (MAE) (aording the equation (8.15)) of lustered one-lobe lafortune model (LM-C { blue line) and its lustered polynomial extension (PLM-C { redline) ompared with non-lustered variants LM and PLM (dash-dot lines) for all 81 reetane�elds of eight di�erent BTFs: fabri01, fabri02, foil01, foil02, wool, leather02, wood01 and wood02respetively.



8.3: Unrestrited Resolution BTF Reetane Model 105Table 8.2: Storage size of the proposed PLM and PLM-C in omparison with size of the rawBTF data and their tiled representation.storage size in MBmaterial raw BTF 10 BTF tiles PLM PLM-C tile size [pixels℄wool 733.3 103.4 33.5 4.3 25� 25fabri01 6766 87.1 24.9 2.9 21� 23fabri02 5863 77.5 24.1 4.0 19� 23foil01 5190 728.1 406.8 19.2 86� 96foil02 5065 527.5 296.7 13.8 74� 79leather02 5074 659.7 381.0 18.6 86� 87wood01 5330 1333.2 771.8 31.8 122 � 125wood02 5083 2405.0 973.4 29.1 137 � 142the raw BTF tiles, the seond olumn shows results of PLM while the last olumn showsthe results of PLM-C. From these images it is apparent that the visual di�erene betweenPLM-C and PLM results is almost indisernible.To sum up this setion, we reall that the ompression ratio of PLM-C ( 1100 ) is ap-proximately ten times higher and omputational expenses are muh the same.Parametri BTF Tiles Rendering on 3D ObjetTill this point the performane of the proposed method was expressed mainly in termsof mean average error. In this setion the synthesised BTF data are mapped on 3D tri-angulated objet to enable subjetive visual omparison of the obtained results. In thesope of this thesis we have used 3D model of Meredes Class-C interior by ourtesy ofDaimler-Chrysler and Bonn University. The ar armrest in Fig. 8.15 is overed by eighttested BTFs approximated by means of the proposed model. The �rst olumn representsarmrest overed by the original tiled BTF measurements, while the seond olumn repre-sents BTF data approximated using the one-lobe LM and �nally the third olumn depitsthe armrest overed by the BTF data obtained using the proposed polynomial extensionof one-lobe Lafortune model (PLM). Aording to graphs in Fig. 8.5 the images in theseond olumn were dim and less ontrast loosing information in dark parts as it is ap-parent for example for foil01 material in omparison with the original BTF data in the�rst olumn. On the other hand, observation of the third olumn show lear improvementof the previous drawbaks and the images are more or less visually indisernible from theoriginal in the �rst olumn.Fig. 8.17 shows part of ar gearbox overed with four BTFs approximated by means ofall proposed reetane models. The �rst row shows original BTF tiling, the seond rowshows result of one-lobe LM, the third row shows results of proposed PLM, the fourth rowshows lustered variant PLM-C and the last row shows PLM-C result for view interpolationonly. The result of PLM-C variant on ar gearbox for di�erent illumination angles is shownin Fig. 1.1. Fig. 8.4 depits two di�erent examples of ar interior overed with seven BTFsapproximated again using PLM-C. The results of proposed PLM-C model are ompared



106 Chapter 8. BTF Modelling Using Reetane Modelswith the results of probabilisti 2D CAR BTF model in Figs. 9.2 and 9.3.Note that in the presented examples it is not used any shading method and the visualappearane is produed by a ombination of the BTF images, orresponding to the lightand amera position, on eah objet polygon.8.3.2 Modelling of the Reetane Model ParametersAn alternative solution to parameter tiling is their synthesis by means of probabilisti im-age synthesis algorithm. Chapter 7 desribes the following three di�erent Markov random�eld based probabilisti texture models: 3D Causal Auto-Regressive model, 2D CausalAuto-Regressive model and Gaussian-Markov Random Field model. These stohastimodels enable synthesis preserving important statistial properties of the original textureimage.The estimated Lafortune parametri images an be onsidered as texture images andthus they an be synthesised by means of these stohasti models. The main motivation ofthis parametri images modelling is a huge ompression ratio of the probabilisti modelsand parametri image synthesis of unrestrited size.There are �ve Lafortune parametri images orresponding to parameters �;Dx;Dy;Dz ; nfor eah olour hannel resulting in �fteen parametri planes in total. For the orretsynthesis all these planes have to be synthesised simultaneously to guarantee the orre-spondene of the individual strutural features. We synthesised the parametri imagesof one-lobe Lafortune model for two di�erent materials foil02 and wood02 by means ofall three probabilisti models introdued in Chapter 7. The obtained examples of BTFimages omputed from the synthesised parametri images (orresponding to the individualprobabilisti texture models GMRF, 3DCAR, 2DCAR respetively) are shown in Fig. 8.16.Although this approah seems to be a promising way of ompression and modelling ofthe Lafortune parametri images there are several pratial problems whih are not solvedyet. One of them is the synthesis time so the only way to use this modelling approahis using hardware implementation. The next problem is preserving of the struture ele-ments orrespondene in parametri images synthesised in the individual synthesis passesfor di�erent view positions. Unlike the reetane BTF model the probabilisti modelsare driven by a Gaussian white noise generator so that the individual synthesised imagesan di�er onsiderably. The most straightforward solution an be using the same noisevalues for eah Rv's parameter synthesis. Moreover, the probabilisti models annot pre-serve regular struture of the original pattern suÆiently so they are suitable mainly formaterials with irregular struture as , e.g., wood, leather, et. as it is shown in Fig. 8.16.8.4 Summary of the Reetane Models for BTF ModellingAppliation of the reetane models to BTF modelling is one of the most ommon ap-proahes whih an yield very realisti results. One an ompare results of the proposedPLM model with the original BTF tiles as applied on a part of ar gearbox in Fig. 8.17.The �gure ompares original BTF measurement mapped on ar gearbox with results ofall reetane models disussed in this hapter. These kind of BTF models an take ad-vantage of steadily inreasing power of graphis hardware enabling to perform relativelyomplex proessing of individual verties and fragments of the textured objet surfae. Sothe pixel-wise reetane models an be easily implemented in suh a way, however their
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Figure 8.15: Part of a ar armrest overed using BTF when only view angle interpolation is used.The �gure inludes the tiled original BTF data (�rst olumn), the results of one-lobe LM (seondolumn), the result of the proposed one-lobe PLM (third olumn) and results of the proposedone-lobe PLM-C (fourth olumn) for eight di�erent materials: fabri01, fabri02, foil01, foil02,knitted wool, leather02 wood01, wood02.
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Figure 8.16: BTF images from the Lafortune parametri images obtained by probabilisti syn-thesis. The �gure shows the Lafortune parametri images estimated from the original BTF images(�rst row), the original BTF images (seond row), the BTF images obtained from the Lafortuneparametri images synthesised using GMRF model (third row), 2DCAR model (fourth row) and3DCAR model (�fth row), respetively, for materials: foil02 and wood02.
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Figure 8.17: A part of Meredes C-lass gearbox overed using four BTFs: foil01, wood01 andfoil02, wood02. The �rst row illustrates using of original tiled BTF data, the seond row depitsapproximation using one-lobe LM, the third row is result of proposed one-lobe PLM model, thefourth row shows result of proposed lustered PLM-C model and the last row shows result of fastPLM-C with view angles pixel-wise interpolation only.



110 Chapter 8. BTF Modelling Using Reetane Modelsperformane is tightly related to their omplexity and kind of mathematial funtionsinvolved. Nowadays, the pixel-wise BTF reetane models an be rendered in real-timeframe-rates but an additional problems our when the rendering of omplex VR senes isrequired ontaining large number of distint materials. This is quite ommon requirementfor example in omputer aided design or safety simulation systems where preservationof a real material appearane is essential. Fig. 8.4 depits two distint examples of arinterior overed by seven di�erent BTFs. The total memory requirements for the storageof all these materials are 119MB so they an be eÆiently stored in GPU for fast BTFrendering of simpler VR senes. However, the rendering of more omplex VR senes on-taining tens of di�erent materials beomes time onsuming due to two main reasons. The�rst is non-zero time of the pixel-wise reetane model omputation with neessary BTFinterpolation and the seond lies in loading-time of the reetane model parameters intographis hardware memory. Thus the number of model parameters and their representa-tion is a ruial problem of all pixel-wise BTF reetane models. However, a redutionof model parameter number leads to ompromised visual quality of obtained results. Forinstane the BTF data ompression ratio of the most advaned BTF models is about 1100with the resulting size of 10MB in average per material. The following main drawbak ofthe reetane models is their inability to synthesise BTF image of arbitrary size withoutadditional image synthesis methods as for instane image tiling presented in this thesis.So the resolution of the synthesised BTF images is limited by the resolution of the originalBTF measurements.
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Figure 8.18: Two partial examples of ar interior modelling (Meredes-Class C). Images il-lustrate seven di�erent materials: wood01, wood02, foil01, foil02, fabri01, fabri02, leather02approximated by means of proposed PLM-C BTF model.



Chapter 9Results Veri�ation and Testing9.1 Probabilisti BTF Models Veri�ationProbabilisti BTF model results veri�ation is a diÆult problem. All probabilisti BTFmodels presented in this thesis are based on some kind of MRF model - GMRF, 2DCAR,3DCAR. However, these MRF models are stohasti models whih do not produe exatopy of an original texture but its aurate approximation. The original texture is sub-stituted by the analytially synthesised texture preserving the major statistial propertiesof the original. The quality of this representation depends on hosen model type and itsinitial parameters as is the support set shape and size, diretion of movement on imagegrid, et.. For this reason any di�erential metri based on pixel-wise image omparisonbetween original and estimated texture image does not make sense. Unfortunately, norobust method is available yet for omputation of this similarity. Thus the only knownway is to ompare the overall visual similarity of two textures by an independent viewer.There were several attempts of texture similarity metris de�nition in the past as, e.g., thework of Julezs [46℄ whih suggested similarity measure based on the seond order statis-tial moments. However, this promising method was questioned later by the same authorin [48, 47℄ sine many ounter-examples of proposed similarity measure failure have beenshown. Another method based on the same assumption but using third order statistiswas introdued in [125℄. Although, this method seems to be robust, it an only deidewhether two texture images are idential or not, thus the method does not provide anysimilarity measure. So it is lear that till today there is no algorithm available providingaeptable texture similarity measure. The only possible way of omparing two textureimages is based on subjetive visual observation. To provide reliable similarity results bymeans of visual observation we build up a relatively large group of voting observers. How-ever, this is beyond the sope of this thesis. Moreover, these tests should be performedfor all proessed BTF materials omprehending hundreds of distint synthesised results.Thus we ompared all results in this thesis aording to subjetive visual observation ofa small group of the department olleagues. Despite the dependene on personal observer'spreferenes this method provides satisfatory results as an be seen on examples in Fig. 9.2and Fig. 9.3.In the ase of BTF synthesis all synthesised subspae images had to be omparedwith the orresponding set of original luster representatives, i.e. 15-25 ouples of olourimages. The ranking priority was set to emhasise preservation of olour hues as well asthe mesostruture of the material. 112



9.2: Reetane BTF Models Veri�ation 1139.2 Reetane BTF Models Veri�ationUnlike MRF BTF models the veri�ation of the proposed reetane BTF models is muheasier, sine the overall struture of the material together with its original loalisationis preserved. Therefore we an employ di�erential measure between individual pixels oforiginal and approximated texture image. We used a mean average error (MAE - see(8.14)) omputed for individual BTF images. Fig. 9.1 illustrates the MAE ourse forknitted wool reetane �eld Rv� �v = 60o; �v = 54o. Eah point on the urves representsone illumination position for �xed view position. The MAE is omputed in eah pointwith respet to (8.14) between original BTF image and its approximation using the LMand PLM.
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Figure 9.1: Mean Average Error for knitted wool reetane �eld Rv � �v = 60o; �v = 54o.
The �nal BTF data veri�ation is performed when original BTF data and their approx-imation by proposed BTF model are mapped onto the same test 3D objet and visuallyompared for the same view and light positions as is depited in Fig. 9.2, Fig. 9.3 andFig. 1.1.During our experiments it beame lear that no ideal BTF model exists. MRF probabilistiBTF models yield utmost data ompression while produing ompromised visual qualityresults for some materials. Whereas the models based on reetane models or BTFfatorisation have exellent visual quality almost indisernible from originals, their memoryrequirements are still too high for omplex sene rendering. Moreover, in ontrast toproposed MRF models the reetane models an only reprodue original BTF, thus onehas to deal with BTF enlargement by means of some additional modeling method.For these reasons the type of optimal BTF model should be hosen arefully aordingto appliation purpose depending on bandwidth of used graphis hardware, speed of BTFrendering, quality requirements, data ompression, et.. For example, in game industry'sVR systems there is no need to have so aurate material reetane approximation asin VR systems aimed to ar or arhitetural interior design or for safety simulation inautomotive or airspae industry. Moreover, the BTF rendering speed is a ruial fatorfor real-time simulations, where di�erent BTF models than are suitable for instane forhigh quality rendering appliations and so on.



114 Chapter 9. Results Veri�ation and Testing

Figure 9.2: Comparison of measured BTF with two proposed BTF models. First image showstiled original BTF measurements of foil01 and wood01 materials mapped on part of ar gearbox.Following images show results of proposed polynomial extension of Lafortune reetane model(PLM) (seond) and probabilisti BTF model based on 2D CAR subspae MRF modelling (third).



9.2: Reetane BTF Models Veri�ation 115

Figure 9.3: Comparison of measured BTF with two proposed BTF models. First image showstiled original BTF measurements of foil02 and wood02 materials mapped on part of ar gearbox.Following images show results of proposed polynomial extension of Lafortune reetane model(PLM) (seond) and probabilisti BTF model based on 2D CAR subspae MRF modelling (third).



Chapter 10Conlusions and Future WorkThe main objetive of this thesis was development of novel Bidiretional Texture Funtion(BTF) models enabling high BTF data ompression and their fast rendering being suitablefor diret hardware implementation, while the major visual harateristis of approximatedBTF are preserved.10.1 Contributions of the ThesisIn this thesis we present an overview of BTF ompression and modelling methods publishedup to now and propose two novel BTF modelling approahes with several orrespondingBTF models:� Probabilisti BTF models based on a set of the following underlying texturemodels:{ 2D ausal autoregressive model{ 3D ausal autoregressive model{ Gaussian-Markov random �eld model� Polynomial extension of pixel-wise reetane BTF modelDuring development of these BTF models a variety of image proessing, statistial andomputer graphis methods were employed to develop two di�erent BTF data proessingpipelines onsisting of BTF analysis, ompression and modelling, synthesis and visualisa-tion of synthesised BTF results on 3D objets.We should emphasise that no ideal BTF model an be laimed the best. Eah BTFmodel has its advantages and disadvantages and is tailored for di�erent appliation and /or kind of approximated material. In the following text we shortly desribe and omparethe both BTF modelling approahes proposed in this thesis, disuss their pros and onsand proper appliation areas.In the �rst proposed BTF modelling approah we atually published the �rst genera-tive BTF models. This approah is based on statistial analysis of BTF subspae imagesby means of several Markov random �eld multi-sale models. BTF subspae images areobtained using BTF segmentation. Based on to these MRF parameters the novel sub-spae images are synthesised with orresponding spetral and spatial information. Thesesubspae images are �nally interpolated with respet to atual view and illumination di-retion and for rough materials also ombined with surfae height information by means116



10.1: Contributions of the Thesis 117of bump/displaement mapping �lter. Surfae height information is enlarged using imagequilting method and the underlying MRF model enables synthesis of subspae images inarbitrary resolution so the resolution of syntheti BTF is atually limited only by hard-ware limits. Due to the model's inherited stohasti harater these methods an notexatly reprodue BTF spatial patterns loations as it is ommon for reetane mod-els. For regular materials the regularity has to be introdued into the model by meansof surfae height information. Our test results prove extreme BTF data ompression ra-tio of the proposed BTF model simultaneously with very realisti visual quality. Somesyntheti BTF textures reprodue given measured images so that both the natural andsyntheti textures are visually almost indisernible and even the worst results an be usedfor preliminary BTF texturing appliations at the least. These models enable huge BTFompression ratio unattainable by any other BTF ompression method (� 1105 ). Similarlyto the seond proposed reetane BTF model, this kind of models enables also very fastBTF synthesis and rendering implemented in graphis hardware.Advantages:� extreme ompression ratio � 1105 ,� synthesis of BTF of arbitrary size,� fast BTF synthesis implementable in GPU (2D CAR model),� mip mapping for free due to a multi-sale nature of the model,� possibility of BTF approximation from spare set of BTF images.Disadvantages:� ompromised visual quality for highly non-Lambertian or transluent materials,Appliation �eld:� omputer games industry or other VR appliations running on low-end hard-ware o�ering satisfatory BTF approximation apturing its most apparent visualfeatures.The seond proposed BTF modelling approah is based on polynomial extension ofpixel-wise Lafortune reetane model omputed for individual spetral hannel of ev-ery pixel. The advantage of this model onsists in using only one reetane lobe whilethe remaining �tting is done by means of polynomial extension of one-lobe Lafortunemodel. Using of one-lobe model onsiderably redues the number of model parameterswhih have to be stored. Moreover, the memory requirements of introdued polynomialoeÆients are negligible in omparison to Lafortune parameters. Proposed reetanemodel has similar omputational requirements as pixel-wise Lafortune model while us-ing only few additional linear operations so it an be easily implemented in graphishardware. To inrease the model's BTF ompression ratio even more we introdue a lus-tering variant whih enables ratios � 12�102 whereas the omputational requirements re-main similar. Due to the fat that the original Lafortune model itself an not enlargeBTF to arbitrary size our generalisation applies a simple image quilting of Lafortuneparametri images. The results of this model show its exellent performane for alleight tested BTFs even for materials with ompliated underlying struture produingstrong subsurfae sattering e�ets, e.g., in the ase of two kinds of laquered woods.Advantages:� exellent visual quality for all tested materials,� fast BTF synthesis implementable in GPU,� moderate ompression ratio � 12�102 .



118 Chapter 10. Conlusions and Future WorkDisadvantages:� inludes additional method for enlargement of synthesised BTF images,� time onsuming o�ine parameters estimation and lustering.Appliation �eld:� professional VR systems (CAD) with high requirements on visual quality andauray.An overall visual omparison of both proposed modelling methods to original BTF isgiven in form of a VR sene showing a part of ar gearbox (see Fig. 9.2 and Fig. 9.3).The images demonstrate high visual quality of both proposed BTF approahes as well asprinipal di�erenes between probabilisti and pixel-wise reetane BTF models, whihis apparent mainly in part of the objet overed by BTF of smooth laquered wood.Attributes of the individual BTF modelling approahes implemented in the sope of thisthesis are ompared in Tab. 10.1.Table 10.1: A omparison of the proposed BTF modeling methods attributes.Tiling PLM-C GMRF 3D CAR 2D CARompression ratio 13 1102 1105 1105 1105seamless enlargement Y Y Y Y Yanal./synt. separated Y Y Y Y Yblok-wise proessing Y Y N Y YGPU implementation Y Y N Y- Yparallel synthesis N Y Y Y Yunseen data N Y- Y Y Y
10.2 Future ResearhEven though both proposed BTF modelling methods enable fast and visually orret BTFmodelling, several problems remain to be solved in this researh �led to enable wider useof BTFs.� BTF interpolation for arbitrary view/illumination diretion is neessary forproduing of BTF renderings without visible seams. However, this is ostly opera-tion whih an take the same time as enumeration of BTF model and onsequentlyonsiderably prolongs the rendering pipeline.� Auray of BTF data is limited in ontemporary BTF databases. This is ausedby limited auray of roboti sample holder and the reti�ation proedure itself.However, new methods of BTF measurement should solve this problem in near fu-ture.� BTF standards are not suggested or developed yet, beause there is no standard-ised BTF ompression or modelling method agreed upon. This may be due to therelative novelty of BTF and its omplexity, whih allows so far only development



119of methods preisely tailored to required appliation and hardware/software plat-form. Owing to this reason there is not ommon ommerial or publi domain BTFrenderer available yet.� Obviously there is vast spae of other possible statistial models (not only MRFs)whih an be investigated for BTF modelling purposes.Although the Bidiretional Texture Funtion is a novel researh area and BTF is notused yet as a standard material desription in omputer graphis its potential is veryhigh as it enables relatively fast photo-realisti modelling of simpler virtual reality senes.With ontinually developing BTF measurement systems and graphis tehniques as wellas inreasing omputational power it is obvious that the number of possible BTF applia-tions will inrease onsiderably in near future and BTF modelling will add a new level ofperfetion to ontemporary virtual reality systems.
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Appendix A
Proposed Probabilisti Models' ResultsBTF material: fabri01

BTF material: fabri02
BTF material: wool

Figure A.1: Bump-mapping (left) in omparison with proposed 2D CAR probabilistiBTF model on part of ylinder lighted from left and right respetively.129
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BTF material: foil01
BTF material: foil02

BTF material: leather02
Figure A.2: Bump-mapping (left) in omparison with proposed 2D CAR probabilistiBTF model on part of ylinder lighted from left and right respetively.



Appendix B
Proposed Reetane Models' ResultsSee other page.
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Figure B.1: Part of a ar armrest overed with BTF when only view angle interpolation is used.Tiled original BTF data (�rst olumn), results of one-lobe PLM (seond olumn) and one-lobePLM-C (third olumn) for eight di�erent materials: fabri01, fabri02, foil01, foil02, knitted wool,leather02 wood01, wood02.



Appendix C
Contents of the Enlosed CDWith this thesis is enlosed a CD omprising:� HTML presentation of proposed BTF model's results. This doument is also avail-able on html://www.utia.as.z/RO/demos/dt_jf/dt_jf.html.� Animations of ar interior parts overed with results of the proposed BTF modelsfor varying view and illumination diretions.� Eletroni version of this doument in PDF format.

133


