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Abstract
One of the most accurate yet still practical representation of material appearance is the Bidirectional Texture
Function (BTF). The BTF can be viewed as an extension of Bidirectional Reflectance Distribution Function
(BRDF) for additional spatial information that includes local visual effects such as shadowing, inter-reflection,
subsurface-scattering, etc. However, the shift from BRDF to BTF represents not only a huge leap in respect to
the realism of material reproduction, but also related high memory and computational costs stemming from the
storage and processing of massive BTF data. In this work we argue that each opaque material, regardless of its
surface structure, can be safely substituted by a BRDF without the introduction of a significant perceptual error
when viewed from an appropriate distance. Therefore, we ran a set of psychophysical studies over 25 materials to
determine so called critical viewing distances, i.e., the minimal distances at which the material spatial structure
(texture) cannot be visually discerned. Our analysis determined such typical distances typical for several material
categories often used in interior design applications. Furthermore, we propose a combination of computational
features that can predict such distances without the need for a psychophysical study. We show that our work can
significantly reduce rendering costs in applications that process complex virtual scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Nowadays, photo-realistic renderings of real-world materi-
als are widely used in computer graphics applications span-
ning from the motion picture industry, computer games, or
paint industry to visual safety simulations or virtual proto-
typing in the automotive and aircraft industry, or architec-
ture. Such renderings rely on various representations of ma-
terial appearance that can offer various levels of realism, but
unfortunately also different data acquisition, storage, and re-
lated computational costs. In most static virtual scenes the
data storage and computational costs can be reduced by
means of selecting a minimal material appearance represen-
tation that can still introduce material properties sufficiently
at minimal resource costs. This paper focuses specifically
on the analysis and modeling of the human ability to distin-
guish material structure (or texture) in different material cat-
egories. We consider this information important to estimate
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a distance at which the material structure becomes visually
indistinguishable. Fig. 1 illustrates this effect on a set of real
photographs of material observed from distances increasing
from 0.6m to 4.8m. As we target our work on virtual en-

Figure 1: A photo-collage of real non-woven fabric material
observed from distances ranging between 0.6m to 4.8m (step
0.2 m).

vironments, we analyze human visual perception of material
structure directly on digitized representations of material ap-
pearance.

Probably the most common representation of material ap-
pearance is the Bidirectional reflectance distribution func-
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tion (BRDF) [NRH∗77] BRDF(θi,ϕi,θv,ϕv). The BRDF
represents reflectance of opaque materials dependent on lo-
cal illumination I(θi,ϕi) and view V(θv,ϕv) directions often
represented by spherical angles.

While a four-dimensional BRDF describes the distri-
bution of energy reflected to the viewing direction when
illuminated from a specific direction, a six-dimensional
bidirectional texture function (BTF) [DvGNK99]
BT F(x,y,θi,ϕi,θv,ϕv) additionally captures the spatial
dependency [x,y] of reflectance across a material surface.

While the BRDF using moderate directional resolution in
HDR quality occupies, e.g., 3 × 100 × 100 = 30000 float
values, the BTF of the same angular and very low spatial
resolution 1282 takes about 128 × 128 × 3 × 100 × 100 =
491520000 values. This tremendous difference in storage
size implies higher memory and computational demands in
related rendering applications.

While BRDF imposes restrictions on reciprocity and
opacity, the six-dimensional BTF generally does not fulfill
these restrictions. This is due to local effects in a rough
material structure such as occlusions, masking, subsurface
scattering, and inter-reflections. These effects constitute a
great difference in BTF realism as compared to BRDF. How-
ever, if we move away from the viewed surface, the spa-
tial structure and local effects become less apparent. Fi-
nally at some viewing distance we arrive at an appear-
ance that is equivalent to a BRDF, i.e., exhibiting the ap-
pearance of a homogeneous, flat surface. This is common
in remote sensing where e.g., foliage or urban areas ap-
pearances are, due to long viewing distance, represented
by a BRDF [QKM∗00, SGS∗02]. Therefore, we argue that
all opaque materials can be represented by a BRDF when
viewed from an appropriate distance without compromising
its basic properties.

Thus the main contributions of this paper are:

• A psychophysical analysis of structure visibility for com-
mon material categories, identifying distances when the
structure becomes indistinguishable for the human ob-
server.

• Analysis of factors that define material structure visibil-
ity allowing its statistical prediction for arbitrary unknown
materials.

• Analysis of rendering speed gain obtained when our
model of structure visibility was applied for on-the-fly se-
lection of material appearance representation.

The paper is structured as follows. Section 2 sets our work
into a context of related works in the field. Section 3 de-
scribes materials tested and provides technical information
of the psychophysical studies. Section 4 summarizes results
of the studies and Section 5 use them to estimate computa-
tional features predicting the results. Section 6 shows render-
ing application of the results. Section 7 concludes the paper
and discusses future challenges.

2. Related Work

Our work is related to the realistic representation of materi-
als in a virtual environment; however, partly deals with the
reliable prediction of material structure visual perception.
We discuss the related work separately.

Psychophysical analysis of materials in virtual environ-
ments – Although visual perception of material appearance
represented by means of isotropic BRDFs has been thor-
oughly studied as a function of global illumination and 3D
geometry [VLD07,RFWB07,KFB10] the perceptual effects
of BTFs were not studied in such a width to date. Although
the material appearance by means of BTF has been a subject
of much research (see [FH09] for a review), most of the anal-
ysis has been focused on the compression and rendering of
these massive datasets. The psychophysical analysis of BTFs
has been limited either to the verification of visual qual-
ity [MMK∗06] or for the guiding of data compression algo-
rithms [FCGH08, FHC10]. Guthe et al. [GMSK09] applied
model of achromatic contrast sensitivity function [BK80] to
achieve a more effective BTF compression without signif-
icant loss of perceived fidelity. The recent work of Jarabo
et al. [JWD∗14] psychophysically analyses effect of filter-
ing (down-sampling and over-sampling) in both spatial and
directional domains. Although this paper is very relevant to
our work, its conclusions are more general and the way the
studies were designed does not help us to derive the required
material-dependent critical distance.

Structure visibility prediction – Our work also closely re-
lates to applied aspects of human visual system (HVS) and
its models. The contrast sensitivity of HVS was extensively
studied and modeled in the past [Wan95]. The spatiotempo-
ral visibility of texture was modeled in [BK80] by a prod-
uct of a spatial and temporal frequency response curves.
These contrast sensitivity curves are approximated by the
model based on two space-time separable Gaussian filters.
Further, luminance and chromatic contrast of stimuli images
can be estimated directly from pixel-wise cone responses
to stimuli images (cone channels respectively) according
to [WM97]. Alternatively, image salience [PN04] can be
used. This method predicts visual fixations by combination
of first- and second-order image statistics, namely luminance
and texture contrasts based on per-pixel spatial gradients
over stimuli luminance represented by a Gaussian-Laplacian
pyramid. Another more applied approaches predicts visual
difference between two images either by a simple statistical
model [WBSS04] or by means of a more involved modeling
of low-level visual perception [MKRH11].

Although this research provided interesting insights into
human perception of digitized materials appearance, there
are still unresolved connections between high-level human
perception of general material appearance and its reliable
computational models. One of such areas, that can poten-
tially simplify materials rendering methods, is an assessment
of the material-dependent perceptual effects of viewing dis-
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tance. Therefore, we designed a set of psychophysical stud-
ies to detect the so called critical viewing distance, i.e., view-
ing distance at which the structure of the material becomes
impossible to identify.

3. The Experiments

This section describes materials used in our analysis, their
digital representation used, test scenes and details of the
three performed psychophysical studies.

3.1. Tested Materials

We tested 25 materials out of categories often used in inte-
rior design (carpet, fabric, leather, and wood). Their BTFs
were measured at an angular resolution of 81× 81 for both
illumination and viewing directions [SSK03], and a spatial
resolution of 350 DPI. Examples of materials are shown in
Fig. 2. For the sake of seamless coverage of the test objects
in required spatial resolution, we estimated the single seam-
less repeatable tile using approach [SH05]. Sizes of tiles
ranged from 80 to 300 pixels. As some of the tiles were not
entirely spatially uniform in hue and luminance, we care-
fully removed their lowest frequency components in Fourier
space. This step avoids visually distractive tile repetition,
that could introduce low frequencies that are not present in
the original material. The approximate BRDFs of materials
were obtained by spatial averaging across tile area. We con-
sider this approximation as reasonably accurate as size of the
biggest tiles was 22 mm, which is negligible when compared
to the distance between the sample and light/camera which
is 1.3m/2.1m.

carpet01 G3 carpet04 G3 fabric003 G2 fabric041 G2 fabric048 G2

fabric075 G2 fabric082 G1 fabric102 G1 fabric106 G1 fabric110 G1

fabric120 G2 fabric122 G2 fabric129 G2 fabric131 G2 fabric146 G3

leather01 G4 leather05 G5 leather07 G4 leather16 G4 wood13 G6

wood14 G6 wood36 G6 wood46 G7 wood55 G6 wood65 G7

Figure 2: Overview of 25 materials used in our study (listed
alphabetically) and their distribution into seven analyzed
groups.
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Figure 3: Categorization of the studied materials into seven
groups based on a size of their biggest structure element.

Next, we visually estimated the physical size of the
biggest structure elements of the tested materials. The re-
sults in mm are shown in Fig. 3 and overlaid over materials
in the supplementary material. We further analyzed height
of the materials by integration of normals resulting from
over-determined photometric stereo using 80 illumination
directions (frontal illumination was removed to reduce
presence of specular reflections). Although one could argue
that we could compute local facets slope distributions
variance for determining the size of material structure,
we consider this approach as unreliable especially for
translucent meso-structure fabric materials. For the sake of
further analysis, we divided materials into seven categories
based on the type of material, its structure size, and height:
G1: fabric smooth group comprises materials fabric082,
fabric102, fabric106, and fabric110. This group represents
mostly apparel fabric materials with a fine structure of
typical size of the biggest structure element being below 1
mm.
G2: fabric meso group comprises materials fabric003,
fabric041, fabric048, fabric075, fabric120, fabric122,
fabric129, and fabric131. This group represents typical
upholstery materials used (e.g., on office chairs) with the
size of structure element being below 3 mm.
G3: fabric rough comprises materials carpet01, carpet04,
and fabric146. It represents very rough fabric material:
office carpet and a crocheted sweater with the structure size
above 4 mm.
G4: leather meso group comprises materials leather01,
leather07 (both synthetic), and leather16 (genuine). This
category comprises relatively flat leather materials (often
used in car interior design or upholstery) with the structure
size of up to 2 mm.
G5: leather rough comprises single rough genuine leather
material leather05. We designed a special category for
this material due to its higher surface height that sets its
appearance apart from leather materials in the previous
group.
G6: wood meso group includes wood13 (beech), wood14
(steamed beech), wood36 (european lime), and wood55
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(plane). These wood materials exhibit smooth surfaces,
smaller structure elements (below 6 mm), and less con-
trasted appearance
G7: wood rough group include material wood46 (american
walnut) and wood65 (wenge). This group represents con-
trasting wood samples with characteristic and long vertical
grooves of sizes above 8 mm.

We also included into the experiment stimuli two artificial
chessboard patterns of square width being 2mm and 5mm.
While the first one was used to check subjects’ resolution,
the second one was used for filtering subjects who either
have impaired vision or did not understand the task.

3.2. Test Scene

As the basic notion of our study is the psychophysical de-
tection of a critical viewing distance where the structure be-
comes visually indistinguishable, we altered the task into an
analysis of the difference between a BRDF and a BTF as
a function of viewing distance. Therefore, we generated a
virtual scene consisting of a set of consequently receding
cylinders as shown in Fig. 4. The upper part of the cylin-
ders shows a BRDF while the lower part shows a BTF of
the same material. We opted for illumination by means of
two directional light sources; one from the right (intensity
1.0) and the second from the left (intensity 0.3). Such con-
figuration guarantees the visibility of structure on all visi-
ble areas of cylinders and preserves contrast shadowing in
the material structure that would be smoothed by a typical
environment illumination. We selected a cylinder due to its

Figure 4: Example of the virtual scene consisting of set
of consequently receding cylinders showing the BRDF and
BTF of the same material. Top-right: a side-by-side com-
parison of real cylinder (left) with its representation on the
screen (right) both having the same width and 5 mm checker-
board pattern.

clearly defined texture mapping without the need of warping
or cutting of the mapped material. The perspective projec-
tion of the scene is calibrated so as its appearance resembles

the same physical template. See the set of photos of physi-
cal cylinder of defined geometry in Fig. 5. The distance of
the virtual camera is set at 0.6m from the orthogonal plane
where the first cylinder appears. Assuming a full-frame sen-
sor of height 24mm, we set the camera focal distance to 45
mm, which corresponds to human vision. This translates to
a vertical viewing angle of ≈30o. The diameter of all cylin-

Figure 5: The virtual scene validation using a set of photos
of the physical cylinder from the same distances as in Fig. 4.

ders is 59mm, and the height of material on its surface is
120mm; their viewing distances range from 0.6m to 4.4m.
A side-by-side comparison of real 59mm wide cylinder with
its rendering observed from distance 0.6m is shown in inset
at the top-right corner of Fig. 4.

3.3. Experiment A – Controlled, Static Stimuli

The task in our experiment was to identify the critical view-
ing distance for all analyzed materials where their BTF
rendering becomes indistinguishable from BRDF rendering.
For this purpose we used a test stimuli of 20 receding cylin-
ders (example stimulus image in Fig. 6) simulating distance
0.6 - 4.4m, i.e., distance step between cylinders was 20 cm.
The upper part of the cylinder always displayed the mate-
rial’s BRDF obtained by spatial averaging of its BTF, while
the lower part always displayed material’s BTF. The ma-
terial renderings were precomputed using ray-tracing (256
samples/pixel) with texture mip-mapping enabled. The sub-
jects task was: Enter the number of the most distant cylinder
where you can still distinguish difference between upper and
lower material. Thus the experiment type can be denoted
as 20 alternative-forced-choice (AFC). Fourteen volunteer
observers participated in the experiment. All had normal or
corrected to normal vision and were naive with respect to
the purpose of the experiment. Subjects evaluated 25 stim-
uli images, one per material. The resolution of images was
1920×1080 pixels and no resampling was applied. There
was no time constraint to finish the task, and a typical ses-
sion took about 5 minutes. All stimuli were presented on a
calibrated 27" ASUS LCD display VG27AH (60 Hz, resolu-
tion 1920×1080 pixels), as the pixel-size was 0.311 mm the
final displayed DPI was 82. The experiment was performed
under dim room lighting and participants were advised to
view the screen at a distance of 0.6m conforming to the de-
signed scene geometry.
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Figure 6: Example of stimuli of controlled Experiment A –
20 cylinders ranging in distance from 0.6 to 4.4 m (step 0.2
m).

3.4. Experiment B – Web-Based, Static Stimuli

To validate results from the controlled experiment and to
generalize its conclusion for different displaying scenarios,
we performed a second psychophysical study, using a web-
based testing interface. As the physical size of the scene has
to be the same regardless of the size and DPI of a user’s
display device, we asked subjects to measure the width of a
500 pixels wide rectangle on the screen. This information al-
lowed us to compute display DPI and resize stimuli images
to an appropriate size. To avoid image blur due to images
down-sampling on the observer’s device, the images were
precomputed in higher resolution 2160×1868 pixels. As the
size of user display devices is often limited, we restricted the
number of cylinders in the scene to 12; however, they span
almost the same viewing distances (0.6 - 4.45 m) as distance
between neighboring cylinders is 35 cm. Therefore, the ex-
periment type can be denoted as 12AFC. This step allowed
us to reduce a physical width of displayed stimuli to images
around 29 cm, which is the width of a typical 13” screen (see
the example stimulus image in Fig. 7).

Figure 7: Example of stimuli of web-based Experiment B
– 12 cylinders ranging in distance from 0.6 to 4.45 m (step
0.35 m).

The meaning of the stimuli images and task for the sub-
jects was the same as in the Experiment A. The material ren-
derings were precomputed using the OpenGL rendering (256

samples/pixel) with a texture mip-mapping enabled. We ap-
plied a high-quality filtering to suppress aliasing artifacts in
BTF rendering. Forty volunteer observers participated in the
experiment. Subjects evaluated 37 stimuli images, one per
each material plus two additional variants for five anisotropic
materials (material rotated for 45o and 90o) and two chess-
board patterns. The subjects were strongly advised to ob-
serve the display from the distance of an outstretched arm
(≈0.6m) and to perform the experiment under dim lighting.
The recorded average viewing parameters across all subjects
are following: display resolution 1627× 998 pixels, pixel-
size 0.279 mm, DPI 96.7. All stimuli images from the Ex-
periment B are shown in the supplemental material.

3.5. Experiment C – Controlled, Dynamic Stimuli

Finally, we replicated 12AFC Experiment B in a controlled
environment as defined in Experiment A. The only difference
was that instead of a static scene we used rotating cylin-
ders. The task for the subject was the same as in the pre-
vious experiments, and stimuli images were computed us-
ing OpenGL. Eight volunteer subjects participated in the ex-
periment, and the majority of them participated in Experi-
ment A too. Subjects evaluated 25 stimuli images, one per
each material. Movies were stored uncompressed with 30
frames/second. To avoid visually distractive seams near the
material overlap on the cylinder, that could produce artifi-
cial lower frequency content, we placed a patch over this
seam along the whole cylinder (as shown in the supplemen-
tary movie).

4. Experimental Results Analysis

This section describes the post-processing of the psy-
chophysical data, presents an analysis of typical responses,
and discuses results of the psychophysical scaling.

4.1. Response Filtering

The main limitation of our experiments using a virtual scene
instead of a real scene lie in the limited DPI of a display de-
vice. This may potentially limit subjects in observing differ-
ences of materials having too low size of the smallest struc-
ture element with regards to the DPI, especially on high-DPI
displays. Therefore, we resorted to the filtering of the sub-
jects’ responses. First, we identified the most distant cylinder
where material structure elements were displayed on more
than one pixel. The subject’s response was recorded only if
the selected number of cylinder was lower than the num-
ber of the identified cylinder. In other words, this guarantees
that the subject still had a chance to see the cylinder where
more than one pixel reproduced the biggest material struc-
ture size although she selected the one a step closer cylinder.
This filtering removed 9.7% (34 out of 350) responses in the
Experiment A, and 8.5% (85 out of 1000) responses in the
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Table 1: Pearson correlations between results of the experi-
ments.

correlation ρ p-val
ExpA vs. ExpB 0.966 0.000000
ExpA vs. ExpC 0.811 0.000001
ExpB vs. ExpC 0.889 0.000000

Experiment B. The filtering took effect especially for mate-
rials with very small size of the structure element, namely
materials fabric075, fabric106, and leather16. Despite the
filtering, we obtained always more than 30% of available re-
sponses for each material.

Further, we checked the user’s vision by artificial chess-
board patterns of size 2mm and 5mm. The visual angle of
2mm square on the most distant cylinder subtended 0.026o

(for DPI 100), which is still below a naked eye, typically
of resolution 0.7 arc-minute = 0.012o [Pir67]. In our exper-
iment, over 90% of subjects were able to distinguish differ-
ences even on the last cylinder. Finally, we removed the sub-
jects who were not able to spot a 5mm pattern on the most
distant cylinder as they probably either suffer from impaired
vision or did not understand the task in the study (1 sub-
ject). Also users who entered the measure of the calibration
rectangle incorrectly in cm, and thus obtained an incorrect
size of the stimuli images, were excluded from the study (2
subjects).

4.2. Averaged Responses

The first step in the analysis of the perceptual data was com-
puting the average critical viewing distance across all sub-
jects. Fig. 8 shows such data obtained from all three ex-
periments across all 25 tested materials, divided into seven
groups as described in Section. 3.1. The errorbars represent
standard deviation values computed across all subjects re-
sponses. Although we observe higher standard deviation val-
ues in data from the Experiment B (which was expected due
to its uncontrolled nature), there is an apparent correlation
between results of all experiments as shown in Tab. 1. The
high correlation of the Experiment B with the other two val-
idate results of this web-based study.

Along with responses, we also recorded the subjects ob-
serving time for individual stimuli images. The average time
span was between 8 and 20 seconds, while the longest
ones belonged to materials having very fine structure and
thus were more difficult to distinguish. Surprisingly, longer
observation times were also recorded for wood materials
(except wood46), where the structure was much more ap-
parent but missing sufficient contrast. The shortest times
were recorded for rough materials where most users quickly
spotted differences across all cylinders, e.g., fabric146 or
wood65.

Fig. 9 depicts the estimated distances averaged across in-
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Figure 8: Perceptually estimated critical distances, where
on average the subjects were still able to distinguish between
a BRDF and BTF. Included are results of all three experi-
ments with standard deviations across all subjects.

dividual material categories. We observe that in the dynamic
scene (Exp. C) the material structure became perceptually
indistinguishable at closer distances (0.2-1.5m closer) gen-
erally for all categories. The biggest difference was in groups
having rough surface structure (G3,G5,G7). We assume that
the reason for this behavior may be in visual blurring of
high-frequency features, present in these materials, due to
material motion.
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Figure 9: The distances averaged across individual groups
obtained in the three psychophysical studies (A, B, and C).

Finally, we analyzed the estimated distance as a func-
tion of material anisotropy (Experiment B). The results for
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three fabric and two wood materials each having three dif-
ferent orientations over the cylinder (0o, 45o, 90o) are given
in Fig. 10. Differences within individual materials are be-
low 0.5 m, which is presumably due to constant size, and
thus visibility, of material structure regardless of changes in
overall appearance. A more detailed analysis of anisotropy
is shown in the supplementary material.
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Figure 10: Impact of anisotropic behavior on distance
where structure becomes indistinguishable.

4.3. Psychophysical Scaling

For further analysis of subjects sensitivity in material struc-
ture recognition, we fitted data of each material category
by a psychometric function [WH01]. For each observer we
recorded value 1 for those cylinders where the difference in
structure was spotted, and 0 otherwise. The summarized data
across all subjects was fitted by a Gumbel function (log-
aritmic Weibull function) using Palamedes psychophysical
data analysis toolbox† for MATLAB. Fig. 11 shows fitted
functions for data in individual material categories from all
experiments. We can observe close similarity of the results
from the static stimuli experiments (A and B).

In accordance with Fig. 9, the perceived structure dis-
appears first for material category leather smooth (G4), al-
though a typical size of leather structure elements is much
larger when compared with smooth fabric. This can be ex-
plained by their low surface profile and thus limited con-
trast. Then follows the category fabric smooth (G1) although
its slope is considerably lower than from leather, which is
presumably due to higher variability of material within this
group. Similarly shaped and positioned psychometric func-
tions were obtained for groups fabric meso (G2), leather
rough (G5), and wood meso (G6). Similarly, closely resem-
bling functions were achieved for groups fabric rough (G3)
and wood rough (G7) marking completely different per-
ceived distances.

The psychometric data from the dynamic stimuli experi-
ment C show slightly different behavior. Generally, the slants
of the functions are steeper, which suggests a lower variance
in subjects responses. This is supported by lower standard

† http://www.palamedestoolbox.org/

deviation values in Exp.C in Fig. 8. The main difference
is in the category of leather rough, where its structure be-
comes significantly less apparent. Similarly, the structure of
smooth wood materials (G6) is also less apparent. This be-
havior conforms with conclusions of Jarabo et al. [JWD∗14]
referring that for dynamic scenes the blur from motion re-
sults to higher visual equivalence than in static scenes. On
the other hand, for leather fine category (G4) motion helps
to recognize structure from a longer distance. We assume
that this atypical behavior is caused by the structure flicker-
ing of fine visual features in the material structure that can-
not be easily detected in static scenes. This supports discus-
sion with the subjects after the experiment, who mentioned
that they were not comparing a BRDF with BTF, but rather
focused on the presence of motion in the bottom part of a
cylinder surface.

Finally, the estimated critical distance thresholds for all
three experiments and individual material groups for signif-
icance level 25% and 50% are shown in Fig. 13. The level
25% means that only 25% or less of observers spotted dif-
ference between materials on a cylinder at given distance.
While the level 50% should provide values of a typical user,
we consider the level 25% as a safe adjustment for applied
rendering algorithms.

4.4. Relationship to Contrast Sensitivity

As our work closely relates to the contrast sensitivity of the
human visual system (HVS) we implemented an achromatic
contrast sensitivity function (CSF) model of Burbeck and
Kelly [BK80]

CSF( fs, ft)= 4π
2 fs ft ·e

−4π( ft+2 fs)
45.9 ·

(
6.1+7.3

∣∣∣∣log10
ft

3 fs

∣∣∣∣3
)

(1)
and plotted it as a function of viewing distance present in
our test scene (see Fig. 6). A temporal frequency ft was set
to 1 and spatial frequency fs in cycles-per-degree was ob-
tained from the size of material structure element. The result
is shown in Fig. 12. The CSF was evaluated for extreme and
typical structure element sizes present in our materials (see
Fig. 3), i.e., 1 mm, 8 mm, and 3.4 mm. When compared to

1 2 3 4

0.2

0.4

0.6

0.8

1

viewing distance [m]

re
la

tiv
e 

co
nt

ra
st

 s
en

si
tiv

ity

 

 
smooth materials (1 mm)
rough materials (8 mm)
mean material (3.4 mm)

Figure 12: A relative contrast sensitivity as a function of
viewing distances in our test scene for the materials with
smallest, biggest, and typical size of structure element.

the psychometric functions in Fig. 11 it is apparent that al-
though the CSF itself can predict HVS sensitivity to frequen-
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Figure 11: Psychometric functions fitting data obtained from all three psychophysical experiments (A, B, and C).

cies of typical materials relatively correctly, it is unable to
predict reliably the sensitivity to materials of extreme sizes,
where it tends to underestimate the critical distance. This is
probably due to lower texture contrast in the real materials
appearance, that is different from idealized sinusoidal-wave
gratings assumed by the CSF model as well as due to im-
pact of material illumination. Therefore, we focused on tex-
ture contrast features in our model of critical distance. More-
over, the tested spatiotemporal CSF model shows that HVS
contrast sensitivity decreases with increasing temporal fre-
quency, and thus guarantees the visual temporal coherence
of renderings in applications relying on the estimated criti-
cal distances.

4.5. Limitations

Note that the type of motion in Experiment C is quite rare,
as in many other scenes object’s geometry combined with
movement would presumably visually mask these fine visual
differences and thus increase the critical viewing distance.

Due to a limited display DPI, we filtered a certain portion
of subjects responses (Section 4.1) that correspond to more
distant cylinders. This unfortunately slightly bias the criti-
cal distance of materials with very fine structure (fabric082,
fabric106, fabric110, leather16) towards ≈0.2m lower dis-
tances. This filtering effect for these materials can be safely
compensated in applications intended for standard screens
with DPI around 100, where the users would face the same
DPI limitation as subjects in the experiment.

When we compare distances derived from psychometric
scaling Fig. 13 with simple distances averaging in Fig. 9, we
obtain higher perceived distances for more rough surfaces
for the psychophysically scaled variant. This is due to a lim-
ited span of distances available in the experiment resulting
in saturated subjects responses for very rough materials, i.e.,
subjects were forced to select the last cylinder although they
might be able to spot difference even further. Unfortunately,
we could not increase viewing distance due to a limited res-
olution of screen, so a proper analysis of rough materials
structure visibility (structure element size above 10mm) be-
comes a subject of future endeavors.
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Figure 13: The distances obtained by psychometric func-
tions thresholding at levels (a) 25% and (b) 50 %. Results
are shown for individual material categories and all three
psychophysical studies (A, B, and C).

5. Structure Visibility Prediction

This section compares obtained psychophysical results with
the combination of standard image and computational met-
rics. The intention is to understand clues behind the visual
perception of material structure. To this end, we analyzed the
correlation of psychophysical results with several promising
features. We used data from Experiment B due to the highest
number of subjects (40) as our golden standard.

The tested computational features were: (1) average lu-
minance of the cylinder, (2) contrast approximated by mean
standard deviation of difference between BTF and BRDF,
(3) 1 − SSIM (Structure Similarity Index) [WBSS04] be-
tween BTF and BRDF, (4) 1 − VDP2/100 (Visual Differ-
ence Predictor) [MKRH11] between BTF and BRDF, (5)
luminance contrast CL, (6) texture contrast CT , and (7)
saliency obtained as linear combination of the last two fea-
tures CL+10 ·CT [PN04]. We have also tested features based
on luminance and chromatic contrast estimated from pixel-
wise cone responses [WM97], however, their performance
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Table 2: Pearson correlations between results of the Exper-
iment B and the tested statistical features.

feature ρ p-val
1 ExpB vs. luminace 0.067 0.749150
2 ExpB vs. contrast 0.583 0.002248
3 ExpB vs. 1-SSIM 0.564 0.003326
4 ExpB vs. 1-VDP2/100 0.649 0.000452
5 ExpB vs. lum. contrast 0.616 0.001037
6 ExpB vs. tex. contrast 0.506 0.009898
7 ExpB vs. saliency 0.591 0.001875
8 ExpB vs. structure size (S) 0.677 0.000203
9 ExpB vs. S·luminace 0.499 0.011103

10 ExpB vs. S·contrast 0.777 0.000005
11 ExpB vs. S·(1-SSIM) 0.878 0.000000
12 ExpB vs. S·(1-VDP2/100) 0.808 0.000001
13 ExpB vs. S·lum. contrast 0.941 0.000000
14 ExpB vs. S·tex. contrast 0.934 0.000000
15 ExpB vs. S·saliency 0.943 0.000000

was relatively poor. All the selected features were computed
from the gray-scale bottom cylinder area of stimuli images
from Experiment B, and values of most of them were ob-
tained by the averaging of values across the image plane.

The correlation between the experiment and features are
shown in the first part of Tab. 2. The obtained values are
not very high, which suggests that there is another element
perceived by subjects not fully captured using the tested fea-
tures. As an important factor impacting the recognition of
material structure is its scale, we tested as an additional fea-
ture (8) the largest size of material structure element (see
Fig. 3). As expected, this gave the best correlation value so
far. Therefore, as another step we used structure size for the
scaling of results of individual tested features and computed
correlation with the experiment again. These values, shown
at rows 9-12 in second part of Tab. 2, show a very strong cor-
relation especially for scaled variants of SSIM, VDP2, and
image saliency.

While these features seem to be very promising candi-
dates for critical viewing distance prediction, they are just
proportional to experimental data and have very low values
for materials where computed difference (SSIM, VDP2) or
contrast are too low. Therefore, we suggest the adaptation
of the features values F to the result of experiment E us-
ing a simple linear model E = k1 + k2F . We used robustfit
function in MATLAB for parameters computation. To check
the stability of the parameters, we performed a leave-one-out
parameters estimation, i.e., distance value for particular ma-
terial was obtained from parameters computed on values of
all-but-this material. Obtained standard deviation values of
such 25 sets of parameters are very low. The mean k1,k2
values and their standard deviations are shown in Tab. 3.
This analysis revealed that the most stable parameters were
achieved for image saliency feature. Another advantage of

Table 3: Estimated linear parameters fitting three selected
features to the data from Experiment B.

feature k1 (std) k2 (std)
S·(1-SSIM) 1.582 (0.044) 1.748 (0.053)
S·(1-VDP2/100) 1.777 (0.033) 18.694 (0.384)
S·saliency 1.292 (0.023) 1.201 (0.015)

this feature is that, due to its Gaussian pyramid, it does not
rely so much on the selection of a structure neighborhood
size (SSIM) or display information and observer distance
(VDP2). Typical times needed for evaluation of individual
features on our stimuli images were: SSIM 0.005 s, VDP2
0.270 s, and saliency 0.082 s.

Parameters of individual tested methods:
SSIM C1 = 0.01, C2 = 0.03, Gaussian window size

11 pixels, σ=1.5
VDP2 screen size: 24”, resolution 1900×1200, view-

ing dist. 0.6 m
saliency∗ Gaussian window size 11 pixels, σc = 0.5, σs

= 2.5, β = 2, s = 5
∗ our implementation in MATLAB is available at
http://staff.utia.cas.cz/filip/projects/15CGF.

Finally, the predicted distances are shown in Fig. 14 to-
gether with errors, where red bars show the proportion of
underestimation of the correct critical distance, while the
green ones its overestimation. The best performance was
achieved by the image saliency feature (c). When compared
with distances obtained from Experiment B (Fig. 8), it is ap-
parent that errors of our model are within standard deviations
across subject responses. This supports our conclusion that
the proposed image saliency feature [PN04] scaled by mate-
rial structure size provides a promising and computationally
reasonable model for material structure visibility.

Finally, Fig. 15 compares values of the critical distances
as obtained from the Experiment B (E) and from the pro-
posed prediction (P) for a typical representatives of individ-
ual tested material categories.

6. Applications

Although a position of observer with respect to viewed ob-
jects in virtual reality is not constrained in general, we as-
sume that there exist typical constrained viewing scenar-
ios. For instance, a car interior is typically viewed and ren-
dered from a driver’s perspective. Similarly a room interior
in virtual-walk-through applications is visualized from a per-
spective of its visitor usually located near entrance or cen-
ter of the room. In other words, we assume that our method
can be beneficial in any applications where viewing distance
constraints can be imposed or assumed. As a consequence it
allows to render a more complex scenes (with more materi-
als) using the same HW.
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fabric smooth fabric106 fabric meso fabric129 fabric rough carpet01 leather fine leather07

dE =1.23 m, dP=1.44 m dE =2.98 m, dP=2.74 m dE =3.25 m, dP=3.58 m dE =1.18 m, dP=1.70 m
leather rough leather05 wood meso wood13 wood14 wood rough wood65

dE =2.34 m, dP=2.23 m dE =2.97 m, dP=2.41 m dE =2.62 m, dP=2.53 m dE =3.67 m, dP=3.44 m

Figure 15: A critical distance example comparing 0.6m distant reference column (left) with columns corresponding to distances
obtained by averaging across subjects responses from Experiment B (E) and from the statistical predictor (P). To conform with
the real scene geometry, the image should be zoomed so as a width of the left reference column subtends 59mm on the screen
and the screen is assumed to be viewed from distance 0.6m.

Even though we would assume a non-constrained viewing
scenario where storing of full BTF in memory is necessary,
our method can reduce computational cost related to BTF
spatial interpolation when the viewing distance exceeds the
critical one. Although this interpolation is often HW sup-
ported (depending on data structuring) its removal can save
typically four BTF reconstructions (needed for spatial inter-
polation) and substitute them by a single cheaper BRDF re-
construction. Although one can claim that our results can be
substituted simply by texture mip-mapping, we argue that
our results are more restrictive as the estimated critical dis-
tance is in majority cases shorter than the one correspond-
ing to the lowest mip-mapping level (i.e., mapping the entire
material structure onto a single pixel).

To support our claims, we created a virtual scene consist-
ing of chairs in a room. The chairs are organized in six rows,
each consisting of twelve chairs. The upper cushioned parts
of chairs were covered by fabric/leather materials while the
bottom construction was covered by wood materials. The
floor consists of two different carpets and walls are repre-
sented by wood (total 14 materials). Depth range of the room
was 12m (Fig. 16-c) and materials were mapped on the ob-

Table 4: Measured rendering speed (in frames-per-second)
of scene 1920×1080 pixels with various material appear-
ance representation approaches, and PSNR of both ap-
proaches related to the reference full BTF method.

method BTF BRDF proposed
FPS 8.3 20.2 11.8
PSNR [dB] – 46.3 58.6

ject in a physical scale. The scene is illuminated by two
point-lights. First, we rendered the scene in full BTF repre-
sentation as it is shown in Fig. 16-a. Then we implemented
an OpenGL shader that switches texel’s rendering from BTF
to BRDF where the viewing distance exceeds the predicted
critical distance dE for a given material. The BTFs in the
scene were filtered to remove aliasing artifacts. The result of
the shader is shown in Fig. 16-b and its difference to BTF
only rendering scaled 30× is shown in Fig. 16-d.

One can see that visual differences are negligible and
PSNR between full BTF rendering and our approach ren-
dering is 58.6 dB as shown in Tab. 4. The table also high-
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(a) Complete BTF rendering (c) scene depth (with typical critical distances highlighted)

(b) BTF / BRDF switching based on dE (≈30% faster) (d) 30× difference between (a) and (b)

Figure 16: Scene consisting of six rows of chairs and 14 materials: (a) rendering using BTF only, (b) switching between BTF
and BRDF based on the proposed model of critical distance dE , (c) scene range-map (depth 12m), (d) 30× scaled difference
between (a) and (b). The proposed approach achieves 30% faster rendering performance while maintain high visual fidelity to
full BTF rendering (PSNR 58.6 dB)

lights the gain in computational speed. While full BTF ren-
dering of the scene in resolution 1920×1080 pixels achieves
8.3 FPS, BRDF rendering (as our upper bound) 20.2 FPS,
our method combining both approaches based on the pre-
dicted critical distance achieves 11.8 FPS. This represents
30% gain in speed when compared to full BTF rendering
without significant loss of perceived fidelity. Although, these
values will vary across different scenes, we consider this ex-
periment as an important showcase application of the pro-
posed critical distance. We have not encountered any tem-
poral discontinuities in our material appearance renderings
(see the accompanying movies).

All tests were performed on a PC with Intel Core 5 2500
3.3GHz, 16GB RAM and graphics nVidia GeForce GTX
570. The relatively low speeds in Tab. 4 result from the high
screen resolution (Full HD), where all pixels are evaluated.
Further, as we are not using an analytical BRDF model, we
have to interpolate the BRDF measurements (from 9 values
using barycentric interpolation in each spectral channel). Fi-
nally, we use just unoptimized shader and data are recon-
structed for each light independently, which also prolongs
the rendering times.

Another application of our findings can be an instrumen-
tal tool that would help interior designers to select materi-

als according to their distance and intended appearance in
the virtual environment. The critical distance can create a
map of the scene (similar to Fig. 16-c), e.g., highlighting ob-
jects where the fabric structure would be visible from a given
viewpoint.

7. Conclusions

The main objective of this paper was the analysis of ma-
terial structure visibility in virtual environments as a func-
tion of viewing distance. Identification of the so called crit-
ical viewing distance, i.e., material-dependent viewing dis-
tance where material structure/texture can be visually distin-
guished, is important in the decision of a BRDF replacing a
BTF to avoid a loss of realism. On the other hand, an appli-
cation of the critical distance can save computational costs in
situations where a BTF may be substituted by a BRDF with-
out the loss of visual fidelity. To this end, we estimated such
distances for 25 interior materials in two static and one dy-
namic psychophysical studies with up to forty participants.
We divided our materials into seven categories and identified
the critical viewing distances for each of them. We found
that critical distances range from 2 m for smooth fabric and
leather through 4 m for rough leather, moderately structured
fabric, smooth wood to 8 m for rough fabric, carpet, and
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(b) k1 + k2S(1−VDP2/100) k1 = 1.777,k2 = 18.694
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(c) k1 + k2S(CL +10 ·CT ) k1 = 1.292,k2 = 1.201
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Figure 14: Comparison of critical viewing distance predic-
tion using structure sized features based on (a) SSIM, (b)
VDP2, (c) image saliency. Red bars show the proportion of
underestimation of the correct distance while the green ones
its overestimation.

wood. Moreover, we analyzed a number of computational
features to derive a reliable model of psychophysical results
applicable as a predictor of critical distances for new ma-
terials. The best modeling performance was obtained by a
feature based on the image salience scaled by the size of the
largest material structure element.

Our results can benefit a number of applications dealing
with complex virtual scene renderings. We have shown that
the application of a critical viewing distance can reduce ren-
dering costs significantly. Further it can serve as a useful tool
for interior designers in selecting of materials according to
an intended appearance in virtual environment. In the future,
we plan to analyze the impact of illumination in an environ-
ment on the critical viewing distance.
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