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1 Introduction

Principal Component Analysis (PCA) is one of the classical data analysis tools for dimensionality
reduction. It is used in many application areas including data compression, de-noising, pattern recog-
nition, shape analysis and spectral analysis. For an overview of its use, see (Jolliffe 2002).

PCA is often used as a black box numerical tool, because of its mature numerical implementation
and ease of use. The correspondence between Principal Components (PCs) and the eigenvectors of a
symmetric matrix makes it intuitively appealing. However, further investigation of PCs—namely the
choice of an optimal number of relevant PCs and confidence intervals on the PCs—is complicated.
Many approximate solutions are available, both formal and ad hoc (Anderson 1971; Jolliffe 2002).
Simple ad hoc criteria are used in applications such as data compression and de-noising, where the
number of PCs is restricted by an available bit-rate or computational cost, rather than by statistical
relevance. However, formal solutions are required in applications where uncertainty of estimates is
an important part of the problem. A typical example is spectral analysis (Kay 1993) or functional
analysis of dynamic image data (Buvat et al. 1998).

Traditionally, probability distributions for PCs were derived using sampling theory (Jolliffe 2002).
These results are mostly asymptotic. Recently, the problem was addressed using Bayesian methodology
(Bishop 1999), by invoking the Factor Analysis (FA) model with isotropic Gaussian noise. However,
the FA model does not impose restrictions of orthogonality, and so posterior results are not identical to
PCA. Moreover, rotational ambiguity in the FA model presents a computational difficulty that must
be overcome by means of regularizing priors.

In this paper, we review the original concept of PCA (Section 2) as well as probabilistic models
which yield a Maximum Likelihood (ML) solution identical to that of PCA (Section 3). The ML solu-
tion does not provide an estimate of rank nor uncertainty bounds for the model estimates. Therefore,
the problem is reformulated using the Bayesian methodology (Section 4). A variational approxima-
tion of the posterior distribution is investigated, and a numerically efficient algorithm—Orthogonal
Variational PCA (OVPCA)—for estimation of an approximating posterior distribution is presented
(Section 5). Further analysis yields both the distribution of rank, as well as uncertainty bounds on
PCs (Section 6). The performance of the method is illustrated via a simple simulation study. A con-
temporary application in medical imaging is also presented. The numerical efficiency of the OVPCA
technique depends on the approach taken to evaluating the involved hypergeometric function of matrix
argument, 0F1. A novel approximation of this function—yielding results of acceptable accuracy and
computational cost—is presented in Appendix B.

Throughout the paper, we will use the following notational conventions:

< set of real numbers.
A ∈ <n×m matrix of dimensions n×m, generally denoted by a capital letter.
ai ith column of matrix A, i = 1 . . .m, using bold-face letter.
ai,j , aD,i,j (i, j)th element of matrix A, AD, respectively, i = 1 . . . n, j = 1 . . .m.
ai, aD,i ith element of vector a, aD, respectively.
A;r, AD;r operator selecting the first r columns of matrix A, AD, respectively.
A;r,r, AD;r,r operator selecting the r×r upper-left sub-block of matrix A, AD, respectively.
a;r, aD;r operator extracting upper length-r sub-vector of vector a, aD, respectively.
A(r) ∈ <n×m subscript (r) denotes matrix A with restricted rank, rank (A) = r ≤

min (n,m).
Ir ∈ <r×r square identity matrix .
1p,q, 0p,q matrix of size p× q with all elements equal to one, zero, respectively.
diag (·) two distinct meanings, clearly distinguished by the context:

(i) a = diag (A), A ∈ <n×m, then a = [a1,1, . . . , aq,q]
′, q = min (n,m)

(ii) A = diag (a), a ∈ <q, then ai,j =
{

ai
0

if i=j
if i 6=j , i, j = 1, . . . , q.

tr (A) trace of matrix A.
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A = UALAV
′
A Singular Value Decomposition (SVD) of matrix A ∈ <n×m, where UA ∈

<n×q, LA ∈ <q×q, VA ∈ <m×q, q = min (n,m). Therefore, in this paper, the
SVD is expressed in ‘economic’ form, i.e. in terms of the only guaranteed-
non-zero part of LA, namely the upper-left q × q diagonal sub-matrix.

[A⊗B] ∈ <np×mq Kronecker product of matrices A ∈ <n×m and B ∈ <p×q, such that

A⊗B =

 a1,1B · · · a1,mB
...

. . .
...

an,1B · · · an,mB

 .
[A ◦B] ∈ <n×m Hadamard product of matrices A ∈ <n×m and B ∈ <n×m, such that

A ◦B =

 a1,1b1,1 · · · a1,mb1,m
...

. . .
...

an,1bn,1 · · · an,mbn,m

 .
χ (·) the indicator (characteristic) function on the argument set.
erf (x) error function: erf (x) = 2√

π

∫ x
0 exp

(
−t2

)
dt.

0F1(a,AA′) hypergeometric function, pFq(·), with p = 0, q = 1, scalar parameter a, and
symmetric matrix parameter AA′.

Pr (·) probability of argument .
f (x|θ) probability density function (pdf) of continuous random variable x, condi-

tioned by known θ.
θ̂ maximizer of f (x|θ), with latter taken as a function of θ (the ML estimate).
Ex [·] expected value of argument with respect to pdf f(x).
ĝ (x) simplified notation for Ex [g (x)] .
x, x upper bound, lower bound of random variable x.
N

(
µ, s2

)
Normal distribution with mean value, µ, and variance, s2.

tN
(
µ, s2; (a, b]

)
Normal of type N

(
µ, s2

)
, confined to support (a, b].

M (F ) von-Mises-Fisher distribution with matrix parameter F .
G (a, b) Gamma distribution with parameters a and b.
U (·), U ((a, b]) Uniform distribution on the argument set, on interval (a, b], respectively.

2 Principal Component Analysis (PCA)

PCA is a widely used tool (Jolliffe 2002) for representation of data sets. Specifically, we consider a set
of n p-dimensional data vectors, di, from data space D:

D = [d1, . . . ,dn] , di ∈ D = <p.

For simplicity, we assume that the sample mean vector 〈d〉n = 1
n

∑n
i=1 di is zero. If 〈d〉n 6= 0, it can

be subtracted from the raw data in a pre-processing step. Explicit modelling of the sample mean is
discussed in Section 7.3. We also assume, without loss of generality, that p ≤ n.

Let Pr be the orthogonal projection operator from D into the r-dimensional subspace, Ar, with
orthonormal basis Wr = [w1, . . . ,wr] ∈ <p×r:

Pr : D → Ar,

di → mi.

Then, M(r) = [m1, . . . ,mn] is the image of D under Pr, inspiring the following decomposition:

D = M(r) + E, (1)
= Wr

(
W ′

rD
)

+ E. (2)
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Here, E = [e1, . . . , en] is the matrix of residuals, ei = di −mi, i = 1, . . . , n.
Consider a (possibly unique) space, A∗r , for which the variation of the projected image, M∗

(r), is
maximized:

A∗r = arg max
Ar

(
tr

(
M(r)M

′
(r)

))
. (3)

This space is, of course, determined by D, or, more specifically, by the sample covariance matrix of D:

S =
1

n− 1

n∑
i=1

did
′
i =

1
n− 1

DD′. (4)

The eigendecomposition of S ∈ <p×p is:
S = UΛU ′. (5)

U = [u1,u2, . . . ,up] is an orthogonal matrix of eigenvectors, such that U ′U = Ip. Λ = diag (λ) is a
diagonal matrix of eigenvalues, λ = [λ1, . . . , λp]

′. For the purpose of this work, it is assumed, without
loss of generality, that

λ1 > λ2 > . . . > λp > 0. (6)

Then, decomposition (5) is unique—up to the sign of each eigenvector, ui—since uiu
′
i = (−ui) (−ui)

′.
Thus, there are 2p possible decompositions (5) satisfying the stated constraints, all equal to within a
sign. It is possible to show (Hotelling 1933) that for any positive r ≤ p, the first r eigenvectors,

U;r = [u1, . . . ,ur] , (7)

form an orthonormal basis of the maximum variation space, A∗r (3). Furthermore, (6) ensures that
A∗r is uniquely determined (the sign ambiguity notwithstanding). The method is known as Principal
Component Analysis (PCA) of D (Hotelling 1933):

D = M∗
(r) + E∗, (8)

= U;r

(
U ′;rD

)
+ E∗, (9)

where M∗
(r) and E∗ are the image and residual defined with respect to A∗r . The r columns of U;r (7)

are called the first r principal components (PCs) of D.

2.1 Least Squares (LS) Interpretation

The chosen additive decomposition (8) was found by optimization of a property (3) of the projected
image (i.e. of the ‘signal’ part of D, namely M(r)). Alternatively, we can optimize the additive
decomposition (1) in terms of the projection trajectories (i.e. the ‘noise’, E) by minimizing its variance.
It is true that

M∗
(r) = arg min

M(r)

(
tr

(
EE′

))
,

where M(r) is defined in (1), (2), and M∗
(r) is given by (8), (9). Thus, the LS criterion is equivalent to

the maximum variation criterion (3), identifying the same subspace, A∗r , of D. This LS interpretation
of PCA is the earliest (Pearson 1901).

3 Rank-Restricted Modelling

Guided by the interpretation above, we now analyze the additive decomposition model (1) as a rank-
restricted signal and noise separation problem. The additive degeneracy in (1) is overcome (i.e. ‘regu-
larized’) by modelling explicitly the properties ofM(r) and E. Since the rank-restricted LS optimization
of Section 2.1 is equivalent to Maximum Likelihood (ML) estimation under the uncorrelated Gaussian
noise assumption (Kay 1993), we design the model so as to yield (8) as its ML estimate. Hence the
following assumptions are appropriate:
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The Noise
E is a normally distributed random matrix:

E ∼ f (E|ω) = N
(
0p,n, ω

−1Ip ⊗ In
)
, (10)

where scalar ω > 0 denotes precision, and other symbols have their usual meaning (Section 1).
(10) is known as the isotropic Gaussian noise model (Tipping and Bishop 1998b).

The Signal
Since the columns of M(r) exist in a lower dimensional space, Ar, it follows that
rank

(
M(r)

)
= r. This fact permits M(r) to be expressed via the ‘economic’ Singular Value

Decomposition (SVD) (Golub and VanLoan 1989):

M(r) = ArLrX
′
r. (11)

Since the rank r of the matrix M(r) is known, we can restrict matrices Ar and Xr to <p×r and
<n×r respectively, with orthogonality restrictions A′rAr = Ir, X ′

rXr = Ir. Also Lr = diag (lr) ∈
<r×r is a diagonal matrix of non-zero singular values, lr = [l1, . . . , lr]

′. Analogously to (6), we
assume that

l1 > l2 > . . . > lr > 0. (12)

The decomposition (11) is unique, up to the sign of the r singular vectors, (i.e. there are
2r possible decompositions (11) satisfying the stated constraints, all equal to within a sign
ambiguity).

Model (1), extended by (10), (11), yields:

f (D|Ar, Lr, Xr, ω, r) = N
(
ArLrX

′
r, ω

−1Ip ⊗ In
)
. (13)

The ML solution for the model parameters, conditioned by known r, is given by(
Âr, L̂r, X̂r, ω̂

)
= arg max

Ar,Lr,Xr,ω
f (D|Ar, Lr, Xr, ω, r) ,

with assignments

Âr = UD;r, L̂r = diag (lD;r) , X̂r = VD;r, ω̂ =
pn∑p

i=r+1 l
2
D,i

. (14)

Here, UD;r, and VD;r are the first r columns of the matrices UD, and VD respectively, obtained from
the SVD

D = UDLDV
′
D. (15)

Finally, LD = diag (lD), where lD = [lD,1, . . . , lD,p]
′ are the singular values of D.

Remark 1 (Parametric Components) Since Âr (14) is numerically identical to Principal Com-
ponents (PCs), UD;r, we will therefore interpret the columns of Ar (11) as parametric components,
i.e. a probability modelling counterpart to classical PCs.

Remark 2 From (15):
DD′ = UDLDV

′
DVDLDU

′
D = UDLDLDU

′
D.

Hence, from (4), and (5), it follows that

UD = U, LD = (n− 1)
1
2 Λ

1
2 . (16)

From (11), (14), the ML signal inference is

M̂(r) = UD;r

(
U ′D;rD

)
= M∗

(r). (17)

Hence, the rank-r ML signal inference is, by design, equal to the LS (maximum variation) estimate,
M∗

(r)(8), (9).
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Remark 3 (Factor Analysis (FA) model) PCA is usually interpreted as ML estimation of the FA
model (Anderson 1971; Tipping and Bishop 1998b); i.e.:

M(r) = ArXr, (18)

in (1), with A ∈ <p×r, X ∈ <r×n being arbitrary real matrices. The zero-mean assumption on the
columns, mi, of M(r), is again adopted for clarity. The conditional distribution of data is now

f (D|Ar, Xr, ω, r) = N
(
ArXr, ω

−1Ip ⊗ In
)
. (19)

The ML estimate of M(r) is, once again, identical to that from (14), i.e. M̂(r) = M∗
(r) (17).

However, ML estimates of Ar and Xr from (18) are not unique, because (18) exhibits multiplicative
degeneracy in the sense that:

M̂(r) = ÂrX̂r =
(
ÂrTr

) (
T−1

r X̂r

)
= ÃrX̃r, (20)

for any arbitrary invertible matrix, Tr ∈ <r×r. This is known as rotational ambiguity in the factor
analysis literature (Anderson 1971). The ML solution of model (18) is therefore

Âr = UD;rTr,

X̂r = T−1
r LD;r,rV

′
D;r.

Thus, the unique optimal subspace, A∗r (3), is once again inferred, but the oriented orthonormal basis
of A∗r corresponding to PCA—i.e. U;r = UD;r (7), (16)—is revealed only for the choice Tr = Ir.

Remark 4 Published solutions to the FA model estimation problem (Tipping and Bishop 1998b; An-
derson 1971), do not directly maximize the model (19), but complement (19) by a Gaussian prior
on Xr, f (Xr) = N (0r,n, Ir ⊗ In) and marginalize over Xr. The resulting maximum of the marginal
likelihood, conditioned by r, is then reached for ω̂ given by (14) and

Âr = UD;r

(
Λ;r,r − ω̂−1Ir

) 1
2 Rr. (21)

Here, UD;r = U;r, Λ;r,r are given by (5), (7), ω̂ by (14), and Rr ∈ <r×r is any orthogonal (i.e. rotation)
matrix. In this case, indeterminacy of the model is reduced from an arbitrary invertible matrix, Tr

(20), to an orthogonal matrix, Rr. This reduction is a consequence of restricting the model by the
prior on Xr. Once again, the same optimal subspace, A∗r, is identified (3), and the ML solution of the
FA model is any orthogonal set (21) spanning A∗r.

3.1 Open problems

With respect to the solutions above, i.e. (8), (14) and (21), we note the following:

1. All are conditioned by knowledge of the dimension, r, of the signal space, Ar. ML estimation
of r is unsuccessful, since its likelihood is strictly increasing with r, reaching its maximum at
r̂ = p. This insensitivity of ML solutions to Ockham’s Razor is widely known (Quinn 1998).

2. The ML solution yields point estimates of parameters. Distributions for quantities Ar, Lr, Xr,
and ω (10), (11) are available, but only in conditional form. For example,

f
(
Ar|D, L̂r, X̂r, ω̂, r

)
∝ f

(
D|Ar, Lr = L̂r, Xr = X̂r, ω = ω̂, r

)
,

with L̂r, X̂r, ω̂ given by (14). This approach, however, neglects the uncertainty in the condition-
ing parameters, Lr, Xr, ω.

Both of these problems can be solved by extending the ML framework, presented above, using the
Bayesian methodology.
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4 Bayesian Treatment of the Rank-Restricted Model

Bayesian solutions of rank-restricted models have usually been based on the Factor Analysis model
(18) (Press and Shigemasu 1989; Bishop 1999). However, the rotational ambiguity (20) presents a
difficulty for estimation. Therefore, priors on Ar and Xr must be used to restrict the optimizers and
reach a solution. Even then, the estimation process is difficult, and approximate iterative evaluation
techniques such as MCMC (Rowe and Press 1998; Press and Shigemasu 1989) and Variational Bayes
(Bishop 1999) are necessary. Furthermore, estimation in the context of these flat posterior densities
negatively influences the speed of convergence.

We have already noted that the orthogonal rank-restricted model (13) forces A∗r to be spanned, in
the ML procedure (14), by an orientated, orthonormal basis, UD;r (7), (16), leaving only a countable
sign-based ambiguity. We exploit this rotational selectivity in this paper and seek an approximate
Bayesian solution for the orthogonal rank-restricted model. However, this advantage is gained at the
expense of orthogonal restrictions which are generally difficult to handle. Specifically, parameters
Ar and Xr (11) are now restricted to having orthonormal columns, i.e. A′rAr = Ir and X ′

rXr = Ir
respectively. Intuitively, each column ai, i = 1 . . . r, of Ar belongs to the unit hyperball in p dimensions,
i.e. ai ∈ Hp. Hence, Ar ∈ Hr

p, the Cartesian product of r p-dimensional unit hyperballs. However, the
requirement of orthogonality—i.e. a′iaj = 0, ∀i 6= j—confines the space further. The orthonormally
constrained subset, Sp,r ⊂ Hr

p is known as the Stiefel manifold (Khatri and Mardia 1977). Therefore,
both the prior and posterior distributions of Ar have a support confined to Sp,r.

The posterior distribution is obtained via Bayes’ rule:

f (Ar, Lr, Xr, ω|D, r) ∝ f (D|Ar, Lr, Xr, ω, r) f (Ar, Lr, Xr, ω, r) , (22)

where, for the present, r is assumed known a priori. Priors on parameters are chosen to be mutually
independent and as non-committal as possible.

Orthogonally constrained parameters Ar and Xr are confined to Sp,r and Sn,r, respectively. The
finite area, C (p, r), of Sp,r is given by (Khatri and Mardia 1977):

C (p, r) =
2rπ

1
2
pr

π
1
4
r(r−1) ∏r

j=1 Γ
{

1
2 (p− j + 1)

} , (23)

where Γ (·) is the Gamma function (Abramowitz and Stegun 1972). We choose the priors on Ar and
Xr to be the least informative, i.e. uniform on Sp,r and Sn,r respectively (Jeffreys 1961):

f (Ar) = C (p, r)−1 χ (Sp,r) , (24)
f (Xr) = C (n, r)−1 χ (Sn,r) . (25)

There is no upper bound on ω > 0 (10). An appropriate prior is therefore (the improper) Jeffreys’
prior on scale parameters (Jeffreys 1961):

f (ω) ∝ ω−1. (26)

4.1 Prior on lr

We assume, that the sum of squares of elements of D is normalized:

p∑
i=n

n∑
j=1

d2
i,j = tr

(
DD′) = 1. (27)

This can easily be achieved in a pre-processing step. (27) can be expressed, using (15), as:

tr
(
DD′) = tr

(
UDLDLDU

′
D

)
=

p∑
i=1

l2D,i = 1.
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This implies the following constraint on lr:

r∑
i=1

l2i ≤
p∑

i=1

l2D,i = 1. (28)

This, together with (12), confines lr to the space

Lr =

{
lr

∣∣∣l1 > l2 > . . . > lr > 0,
r∑

i=1

l2i ≤ 1

}
, (29)

which is a segment of the unit hyperball, Hr, of volume

hr = π
r
2 /Γ

(r
2

+ 1
)
. (30)

The positivity constraints in (29) restrict the volume of Lr to hr/2r, while hyperplanes {li = lj , ∀i, j = 1 . . . r}
partition this positive segment into r! sub-segments, each of equal volume, and only one of which sat-
isfies (12). Hence, the volume of the support (29) is

Vr = hr
1

2r (r!)
=

π
r
2

Γ
(

r
2 + 1

)
2r (r!)

.

Therefore, we choose the prior distribution on lr to be non-committal—i.e. uniform—on support (29):

f (lr) = U (Lr) = V−1
r χ (Lr) . (31)

4.2 The joint distribution

Multiplying (13) by (24), (25), (26), and (31), and using the chain rule of probability, we obtain the
joint distribution:

f (D,Ar, Lr, Xr, ω|r) ∝ N
(
ArLrXr, ω

−1Ip ⊗ In
)
×

ω−1V−1
r C (p, r)−1C (n, r)−1 , (32)

on support {Ar ∈ Sp,r} × {lr ∈ Lr} × {Xr ∈ Sn,r} × {ω > 0} .
Exact posterior inference from (32) is not available. Since the Variational Bayes (VB) approxi-

mation method was successfully used for the factor analysis model (18) (Bishop 1999), it will now be
invoked for the orthogonally restricted model (32).

5 Orthogonal Variational PCA (OVPCA)

5.1 Review of the Variational Bayes (VB) Framework

An intractable posterior pdf, f (θ|D), can be approximated via a tractable pdf, f̃ (θ|D), which min-
imizes the Kullback-Leibler distance (KLD) between the latter and the former. The KLD is defined
as

KL
(
f̃ (θ|D) ||f (θ|D)

)
= −

∫
Θ
f̃ (θ|D) ln

f (θ|D)
f̃ (θ|D)

dθ ≥ 0, (33)

where Θ denotes the support of θ. Equality is reached in (33) iff f̃ (θ|D) = f (θ|D) (Kullback and
Leibler 1951).

Given a multivariate parameterization, θ = [α′, β′]′, we can functionally constrain f̃ (θ|D) to
distributions exhibiting posterior independence between α and β. Then, the minimum of the KLD is
found via functional optimization (Bishop 1999; Miskin 2000; Ghahramani and Beal 2000) using the
Variational Bayes (VB) procedure. This is expressed by the following theorem.
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Theorem 1 (Variational Bayes (VB)) Let f (α, β|D) be a joint posterior pdf of random variables
α, β, given D. Let f̃ (α, β|D) be an approximate pdf restricted to the set of conditionally independent
distributions on α, β:

f̃ (α, β|D) = fα (α|D) fβ (β|D) . (34)

Then, the minimum of the KL distance, KL
(
f̃ (α, β|D) ||f (α, β|D)

)
, is reached for

fα (α|D) ∝ exp (Eβ [ln (f (α, β,D))]) , (35)
fβ (β|D) ∝ exp (Eα [ln (f (α, β,D))]) , (36)

where Eα [·] and Eβ [·] denote expectation with respect to fα (α|D) and fβ (β|D) respectively.

Proof: A simple exercise in probability calculus, using non-negativity of the KLD.

5.2 Orthogonal Variational PCA (OVPCA)

Corollary 1 Theorem 1, applied to model (32), yields the following approximate posterior distribu-
tions:

f (Ar|D, r) = M (FA) , (37)
f (Xr|D, r) = M (FX) , (38)

f (lr|D, r) = tN
(
m, s2Ir; L̃r

)
, (39)

f (ω|D, r) = Γ (a, b) . (40)

Here, M (·) denotes the von-Mises-Fisher matrix distribution (i.e. the matrix normal distribution
restricted to the Stiefel manifold (Khatri and Mardia 1977): see Appendix A). Their matrix parameters
are FA ∈ <p×r in (37), and FX ∈ <n×r in (38). tN (·) is the truncated Normal distribution with
support formally given by (29). The simplified support, L̃r, adopted in (39) is explained in Remark 5,
to follow.

The data-dependent (and rank-dependent) parameters of (37)–(40) are:

FA = ω̂DX̂rL̂r, (41)

FX = ω̂D′ÂrL̂r, (42)

m = diag
(
X̂r

′
D′Âr

)
, (43)

s2 = ω̂−1, (44)

a =
pn

2
, (45)

b =
1
2
tr

(
DD′ − 2DX̂rL̂rÂr

′)
+

1
2
l̂′rlr. (46)

These, therefore, are defined in terms of moments of distributions (37)–(40), namely Âr, X̂r, l̂r, l̂′rlr,
and ω̂. The SVD of parameters FA (41) and FX (42) are

FA = UFA
LFA

V ′
FA
, (47)

FX = UFX
LFX

V ′
FX
, (48)

with LFX
and LFA

both in <r×r. Then:

Âr = UFA
G (p, LFA

)V ′
FA
, (49)

X̂r = UFX
G (n,LFX

)V ′
FX
, (50)

l̂r = m+ s ζ (m, s) , (51)

l̂′rlr = rs2 +m′l̂r − sρ (m, s) , (52)

ω̂ =
a

b
. (53)

Moments of M (·) and tN (·)—from which (49)–(52) are derived—are reviewed in Appendices A and
C respectively. Functions G (·, ·), ζ (·, ·), and ρ (·, ·) are also defined there.
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Proof: An easy but lengthy exercise in probability calculus.

Remark 5 The exact distribution for lr in the VB procedure is

f (lr|D, r) = tN
(
m, s2Ir;Lr

)
, (54)

i.e. the Normal distribution confined to support Lr (29). However, the moments of (54) are difficult to
evaluate. Hence, we approximate the support Lr by its envelope Lr ≈ Lr, as follows, lr is maximized
if l1 = l2 = . . . = lr, lr+1 = lr+2 = . . . = lp = 0. In this case,

∑p
i=1 l

2
i = rl2r < 1 which defines an

upper bound lr < lr to be lr = r−
1
2 . Thus, (29) has a rectangular envelope:

Lr =
{
lr|0 < li ≤ li = i−

1
2 , i = 1, . . . , r

}
. (55)

(54) is then approximated by (39). The error of approximation is largest at the boundaries li = lj , i 6=
j, i, j ∈ {1 . . . r}, and is negligible when no two li’s are equal.

Note that equations (41–53) form a set of implicit equations for which a closed form solution is not
available. Implicit equations in the VB context (Bishop 1999; Ghahramani and Beal 2000; Miskin
2000) are usually solved iteratively via an algorithm of the Expectation Maximization (EM) kind
(Dempster et al. 1977; Rubin and Thayer 1982). Properties of the variational EM algorithm are
therefore similar to those of EM (Beal and Ghahramani 2003). Closer analysis of equations (41)–(53)
reveals that the variational EM algorithm for our model can be simplified, as follows.

Proposition 1 (Orthogonal Variational PCA (OVPCA)) Consider the special case where Âr

(49) and X̂r (50) are formed from scaled singular vectors of the data matrix, D (15):

Âr = UD;rKA, (56)

X̂r = VD;rKX . (57)

and KA = diag (kA) ∈ <r×r, KX = diag (kX) ∈ <r×r denote constants of proportionality which must
be determined. Then, each iteration using equations (41)–(53) satisfies (56) and (57).

Proof: Consider the tth iteration step, t = 1, 2, . . ., where superscript (t) denotes the optimized

parameter values in this step. Assume that estimates, Âr
(t−1)

, X̂r
(t−1)

, at the end of the previous
step1, are of the form (56), (57); i.e.

Â(t−1)
r = UD;rK

(t−1)
A , X̂r

(t−1)
= VD;rK

(t−1)
X .

Hence, the von-Mises-Fisher parameters, FA and FX , are updated, at iteration t, via (41) and (42)
respectively, and using (15):

F
(t)
A = ω̂(t−1)

(
UDLDV

′
D

)
VD;rK

(t−1)
X L̂r

(t−1)
= ω̂(t−1)UD;rLD;r,rK

(t−1)
X L̂r

(t−1)
, (58)

F
(t)
X = ω̂(t−1)

(
UDLDV

′
D

)′
UD;rK

(t−1)
A L̂(t−1)

r = ω̂(t−1)VD;rLD;r,rK
(t−1)
A L̂(t−1)

r . (59)

These are in the SVD form of FA (47), and FX (48) respectively, with assignments:

U
(t)
FA

= UD;r, L
(t)
FA

= ω̂(t−1)LD;r,rK
(t−1)
X L̂(t−1)

r , V
(t)
FA

= Ir, (60)

U
(t)
FX

= VD;r, L
(t)
FX

= ω̂(t−1)LD;r,rK
(t−1)
A L̂(t−1)

r , V
(t)
FX

= Ir. (61)

Substituting (60) and (61) into (49) and (50) respectively:

Â(t)
r = UD;rG

(
p, ω̂(t−1)LD;r,rK

(t−1)
X L̂(t−1)

r

)
Ir = UD;rK

(t)
A , (62)

X̂(t)
r = VD;rG

(
n, ω̂(t−1)LD;r,rK

(t−1)
A L̂(t−1)

r

)
Ir = VD;rK

(t)
X ,

1Initial conditions, i.e. at t = 0, will be specified shortly.
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since the function G (·, ·) with diagonal matrix argument returns also a diagonal matrix (A.9). There-
fore, updated estimates, Â(t)

r and X̂(t)
r , remain of the same type as (56), (57) with assignments:

K
(t)
A = G

(
p, ω̂(t−1)LD;r,rK

(t−1)
X L̂(t−1)

r

)
, (63)

K
(t)
X = G

(
n, ω̂(t−1)LD;r,rK

(t−1)
A L̂(t−1)

r

)
. (64)

Note that, under Proposition 1, the optimal values of Âr and X̂r are determined up to the constants
of proportionality, kA and kX . The iterative algorithm is then greatly simplified, since we need only
iterate on the 2r degrees of freedom constituting KA and KX together, and not on Âr and X̂r with
r
(
p+ n− r−1

2

)
degrees of freedom. To achieve this, we must, however, satisfy the requirement of

Proposition 1, namely we must initialize the iterative scheme to satisfy (56) and (57), using any
diagonal matrices KA and KX with positive2 diagonal elements. In fact, for K(0)

A = K
(0)
X = Ir, (56)

and (57) are the ML solutions (14), and so an ML-initialized iteration is proposed, leading finally to
the Orthogonal Variational PCA (OVPCA) algorithm, which follows. Note that:

• initialization via the ML solution guarantees fast convergence to the unique solution, since (32)
is likelihood-dominated by design.

• (41)–(53) now involve products of diagonal matrices. Hence, we need only evaluate diagonal
elements, using identities of the kind

diag (KAKX) = kA ◦ kX ,

where ◦ denotes Hadamard product. Equations (43), (46), (63), and (64) can now be reformu-
lated in efficient diagonal form.

The OVPCA algorithm is as follows.

Algorithm 1 (OVPCA)

1. Initialize estimates using ML solution (14), i.e. k
(0)
A = k

(0)
X = 1r,1, l̂r

(0)
= lD;r, ω̂(0) =

pnPp
i=r+1 l2D,i

.

2. Evaluate until convergence is reached:

k
(t)
A = G

(
p, ω̂(t−1)lD;r ◦ k(t−1)

X ◦ l̂r
(t−1)

)
, (65)

k
(t)
X = G

(
n, ω̂(t−1)lD;r ◦ k(t−1)

A ◦ l̂r
(t−1)

)
, (66)

m(t) = k
(t−1)
X ◦ lD;r ◦ k(t−1)

A , (67)

s(t) =
(
ω̂(t−1)

)− 1
2
, (68)

l̂r
(t)

= m(t−1) + s(t−1)ζ
(
m(t−1), s(t−1)

)
, (69)

l̂′rlr
(t)

=
(
m(t−1)

)′
l̂r

(t−1)
+ r

(
s(t−1)

)2
− s(t−1)ρ

(
m(t−1), s(t−1)

)′
11,r, (70)

ω̂(t) = pn

[
l′DlD − 2

(
k

(t−1)
X ◦ l̂r

(t−1)
◦ k(t−1)

A

)′
lD;r + l̂′rlr

(t−1)
]−1

. (71)

Note that, G (·, ·), ζ (m, s), and ρ (m, s) are functions returning vectors of the same length as
their vector arguments, as defined in Appendixes A and C, respectively.

2Non-negativity is required by G (·, ·). Initialization with zeros will be discussed shortly.
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Remark 6 (Automatic Relevance Determination (ARD):) it is observed that estimates of kA,i

(65) and kX,i (66) typically converge to zero for i > ru, for some empirical upper bound, ru. A similar
property was used as a rank selection criterion in previously published Bayesian approaches. In those
approaches, the model order was chosen as r̂ = ru (Bishop 1999).

Remark 7 Equations (65)–(67) are (trivially) satisfied for

kA = kX = m = 0r,1, (72)

independently of data, giving M̂(r) = 0p,n (11). The only parameter then to be determined is ω.
Solution (72) is appropriate for data formed only by realizations of isotropic Gaussian noise without
any signal (8), i.e. r = 0. This case will then be revealed by the ARD Property (Remark 6), i.e. ru
will be found to equal zero. If the ARD Property yields a different estimate, i.e. ru ≥ 1, then (72)
constitutes a local maximum (or singular point) of the VB approximation (37)–(40), of (32). Then,
the global minimum of the KLD has to be found by evaluation of KLD for both cases3, namely, the
ML initialized case (Algorithm 1) and the zero-centred case (72). Further comment on evaluation of
the KLD for this model (32) follows in Section 6.1.

Conjecture 1 Apart from the zero-centred solution (72), there is only one solution of equations (41)–
(53) for each of the 2r cases of decomposition (11) (arising from those in (7)).

Remark 8 If Conjecture 1 is true, then, under any random initialization, the iterative equations
(41)–(53) also converge to the solution found under Proposition 1 (56)–(57).

Remark 9 The columns of matrix parameter Ar were named parametric components (Remark 1).
Hence, their posterior expected value, Âr (56) will be known as parametric principal components of
D, in analogy to the ML definition (14) of the classical principal components (7). These two types of
PCs’ are collinear (56) under Proposition 1 and synonymous when kA = 1r,1, which is the case for
ω̂ →∞.

Proposition 1 reveals the following interesting analytical insight:

• We noted 2r cases of SVD decomposition (11), each determined by the signs of the singular
vectors. Note, however, that Proposition 1 separates the posterior mean values, Âr (56) and
X̂r (57), into an orthogonal and proportionality part. Only the latter (kA and kX respectively)
are estimated using the OVPCA algorithm (Algorithm 1). Since the elements of vector function
G (·, ·) are confined to the interval [0, 1] (see Appendix A.2, Figure 3), estimated values of kA

(65) and kX (66) are always positive. In other words, the VB solution is approximating only one
of the possible 2r modes. Symmetry ensures that the OVPCA solution is valid for any of them.
This is important, as the multimodal distribution of Ar is symmetric around the coordinate
origin, which would consign the posterior mean to being Âr = 0p,r. Note that this symmetry is
also reflected in the VB equations (65)–(71) (Remark7).

• As a consequence of the ARD Property (Remark 6), the number of possible modes of the VB
approximate posterior distribution is reduced to 2ru .

6 Answering the Open Problems

The OVPCA solution presented above allows us to address the two ‘open problems’ related to the ML
solution, listed in Section 3.1.

3Experiments suggests that if ru ≥ 1 its KLD distance is smaller than the one corresponding to (72).
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6.1 Inference of Rank

In the foregoing, we assumed that the rank, r, of the model (11) was known a priori. If this is not the
case, then inference of this parameter can be made using Bayes’ rule:

f (r|D) ∝ f (D|r) f (r) , (73)

where f (r) denotes the prior on r, typically uniform on 1 ≤ r ≤ p. The marginal data posterior,
f (D|r), can be approximated by a lower bound:

ln f (D|r) ≥ ln f (D|r)−KL
(
f̃ (θ|D, r) ||f (θ|D, r)

)
, (74)

where KL (·) ≥ 0 can be minimized by the variational solution (Theorem 1). Hence, (74) is the
greatest lower bound consistent with the conditionally independent approximation (34). Hence, we
adopt the approximation

ln f (D|r) ≈ ln f (D|r)−KL
(
f̃ (θ|D, r) ||f (θ|D, r)

)
=

∫
Θ
f̃ (θ|D, r)

(
ln f (D, θ|r)− ln

(
f̃ (θ|D, r)

))
dθ. (75)

The parameters are θ = [Ar, Lr, Xr, ω], and f (D, θ|r) is given by (32). The optimal approximation,
f̃ (θ|D, r), is the conditionally independent model, yielded by the VB framework (37)–(40):

f̃ (Ar, Lr, Xr, ω|D) = f (Ar|D, r) f (Lr|D, r) f (Xr|D, r) f (ω|D, r) (76)

Substituting (37)–(40) into (76), and (32) into (75), then (73) yields:

f (r|D) ∝ exp

{
−r

2
lnπ + r ln 2 + lnΓ

(r
2

+ 1
)

+ ln (r!) (77)

+
1
2
s−2

(
m′m− l̂r

′
m−m′l̂r + l̂′rlr

)
+ ln 0F1

(
1
2
p,

1
4
FAF

′
A

)
− ω̂

(
kX ◦ l̂r ◦ kA

)′
lD;r

+ ln 0F1

(
1
2
n,

1
4
FXF

′
X

)
− ω̂

(
kX ◦ l̂r ◦ kA

)′
lD;r

+
r∑

j=1

ln
[
erf

((
s
√

2
)−1 (

lj −mj

))
+ erf

((
s
√

2
)−1

mj

)]

+r ln
(
s
√
π/2

)
− (a+ 1) ln b

}
.

kA, kX , m, l̂r, l̂′rlr, s and ω̂ are the converged solutions of the OVPCA algorithm (Algorithm 1), and
FA (41) and FX (42) are functions of these. lj is given by (55).

We note the following:

• One of the main algorithmic advantages of PCA is that a single evaluation of all p eigenvectors,
i.e. U = UD (5), (15), (16) provides with ease the PCA solution for any rank r < p, via
the simple extraction of the first r columns, UD;r (7). The OVPCA algorithm also enjoys this
property, thanks to the linear dependence of solution (56) on UD. Furthermore, VD observes
the same property (15). Therefore, in the OVPCA procedure, the optimal solution for a given
rank is obtained by simple extraction of UD;r and VD;r, followed by iterations involving only
scaling coefficients, kA and kX , for that rank. Hence, p × (p+ n) values (those of UD and VD)
are determined rank-independently via the ML solution, and only 4r+3 values (those of vectors
kA, kX , m, l̂r, and scalars s, l̂′rlr and ω̂ together) are involved in the rank-dependent iterations
(65)–(71).
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Figure 1: Illustration of properties of von-Mises-Fisher distribution M (F ) of A, for A,F ∈ <2×1.

• As a consequence of the ARD Property (Remark 6), values of all parameters (Ar, Lr, Xr, ω)
inferred by the OVPCA algorithm are almost identical for r ≥ ru (this will be demonstrated
in simulation in Section 7). Therefore, it is reasonable to evaluate the OVPCA parameters for
r = p − 1 (we cannot use r = p since then ω̂p is not valid (14)), and approximate Âr ≈ Âp−1,
∀r ≥ ru, (and similarly for Lr, Xr, ω). This approximation can significantly reduce the number
of runs of the OVPCA algorithm required for evaluation of f (r|D) (77).

• The explicit posterior distribution on r, i.e. (77), was not provided by previously published
approaches (Bishop 1999; Ghahramani and Beal 2000). In its place, the ARD Property of
their algorithms was used to infer rank. Since the OVPCA algorithm also possesses the ARD
Property (Remark 6), it will be used for comparison with the formal Bayesian solution (77) in
the simulation studies that follow (Section 7).

6.2 Moments of the Model Parameters

First moments of the model parameters—i.e. Âr, l̂r, X̂r, ω̂—are outputs of the OVPCA algorithm.
The Bayesian framework also permits uncertainty measures on these parameters to be determined,
notably, Highest Posterior Density (HPD) regions Bernardo and Smith (1997). HPD regions on the
von-Mises-Fisher distribution (37), (38) are not known to us. Therefore, we derive them in Appendix
A.3, using a Gaussian approximation. We use the approximate HPD regions to obtain uncertainty
bounds on parametric components, as follows. From (A.4), (A.5), the pdf of Ar ∈ <n×r is fully
determined by the transformed variable yA ∈ <r:

yA (Ar) = diag
(
U ′FA

ArVFA

)
= diag

(
U ′D;rAr

)
, (78)

using (61). Hence, uncertainty bounds for Ar can be mapped to uncertainty bounds for yA using (78),
as shown in Appendix A.3. The idea is illustrated graphically for p = 2 and r = 1 in Figure 1. Using
this mapping, lower and upper uncertainty bounds on Ar can be defined as follows:

Ar =
{
Ar : yA (Ar) = y

A

}
, (79)

Ar = {Ar : yA (Ar) = yA} , (80)

where yA (·) is given by (78), and y
A
, yA—given in Appendix A.3—are bounds to the approximating

Gaussian distribution of yA (A.15). Uncertainty bounds for Xr—again von-Mises-Fisher distributed
(38)—are obtained in the same way.

Using Proposition 1, i.e. (56), transformation (78) of the parametric PCs Âr (57) becomes

yA

(
Âr

)
= diag

(
U ′D;rUD;rKA

)
= kA. (81)

Uncertainty bounds on variables lr and ω are relatively easy to obtain. The truncated Normal
distribution of lr (39) can be approximated by Normal distribution, using Maximum Entropy principle,
as discussed in Appendix C. Parameter ω is Gamma distributed (40), and so uncertainty bounds are
therefore available.
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Table 1: Bayesian inference of singular values, lr, given different rank estimates: Bayesian selection
(r = 3), and ARD Property (r = 9).

Bayesian selection ARD Property
r = max f (r|D) = 3 r = 9

l1 l2 l3 l1 l2 l3 l4 l5 . . . l9
simulated 19.48 11.70 1.66 19.48 11.70 1.66 0 0

upper bound 19.50 12.00 1.87 19.50 12.00 1.87 0.21 0.21
mean value 19.29 11.79 1.66 19.28 11.79 1.66 0.08 0.08
lower bound 19.08 11.58 1.45 19.07 11.58 1.44 0 0

Table 2: Inference of Ar via OVPCA (displayed using transformed variable yA;r).
Bayesian selection ARD Property

r = max f (r|D) = 3 r = 9
yA,1 yA,2 yA,3 yA,1 yA,2 yA,3 yA,4 yA,5 . . . yA,9

simulated 0.9999 0.9995 0.9824 0.9999 0.9995 0.9824 0.4469 < 0.45
upper bound, yA;i 1.0000 1.0000 1.0037 1.0000 1.0000 1.0038 0.6325 0.6325
mean value, kA,1 0.9999 0.9997 0.9862 0.9999 0.9997 0.9861 0 0
lower bound, yA,i 0.9997 0.9993 0.9688 0.9997 0.9993 0.9684 −0.6325 −0.6325

7 Illustrative examples

7.1 Simulated data study

A set of multidimensional data was simulated using model (13), with p = 10, n = 200, r = 3, and
ω = 10. True (i.e. the simulated) singular values are given in Table 1 together with approximating
moments of their posterior distribution (39). Simulated values are clearly within the uncertainty
bounds. We condition on two different cases of r, namely (i) maximum of the posterior distribution of
r (77), and (ii) highest possible rank r = p−1 = 9, which allows the ARD property (6) to be exploited.
Note that values of f (li|D, r = 3) , and f (li|D, r = 9) are almost identical for i = 1, . . . , 3, which can
be exploited in the rapid evaluation of (77) as discussed in the second bullet point of Section 6.1.

VB approximating posterior distributions for orthogonal parameters Ar (37) and Xr (38) are
presented in transformed variables, yA and yX (78), respectively. Moments of the transformed distri-
butions are displayed in Table 2 and Table 3, together with the projection of the original simulated
values in each case. Again, we condition on the two cases of r used in Table 1. Projected true values
of Ar and Xr are, in both cases, within the uncertainty bounds of the posteriors (A.15), f (yA|D, r)
and f (yX |D, r), respectively.

Results of Bayesian rank selection (77) are displayed in Table 4. The ARD Property of the OVPCA
algorithm (Remark 6) is apparent in the mean-value rows of the ARD sub-tables of Tables 2 and 3. In
this simple simulation study, both methods—i.e. the Bayesian approach (77), and the ARD Property
(Remark 6)—selected the true rank of the data.

7.2 Application in medical scintigraphic image analysis

PCA is regularly used as a dimensionality reduction step in the factor analysis of medical image
sequences (Buvat et al. 1998). In this study, a scintigraphic dynamic image sequence of the kidneys is
considered. It contains p = 120 images, each of size 64× 64. These were preprocessed as follows:

Table 3: Inference of Xr via OVPCA(displayed in transformed variable yX;r).
Bayesian selection ARD Property

r = max f (r|D) = 3 r = 9
yX,1 yX,2 yX,3 yX,1 yX,2 yX,3 yX,4 yX,5 . . . yX,9

simulated 0.9987 0.9973 0.8582 0.9987 0.9973 0.8582 0.0097 <0.1706
upper bound, yX,i 0.9990 0.9973 0.8923 0.9989 0.9972 0.8911 0.2000 0.2000
mean value, kX,i 0.9985 0.9961 0.8484 0.9985 0.9961 0.8469 0 0
lower bound, yX,i 0.9981 0.9950 0.8046 0.9981 0.9950 0.8026 -0.2000 -0.2000
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Table 4: Bayesian posterior distribution of rank r for simulated data.
r = 1 r = 2 r = 3 r = 4 r = 5, . . . , 9

f (r|D) 0 0 0.9821 0.0174 0 . . . 0

Table 5: Comparison of rank selection methods for scintigraphic image data.
OVPCA OVPCA Variational PCA (30 trials)
f (r|D) ARD Property rank relative frequency

Pr (r = 17|D) = 0.0004
Pr (r = 18|D) = 0.2761
Pr (r = 19|D) = 0.7232
Pr (r = 20|D) = 0.0002

ru = 45
r = 25
r = 26
r = 27

1/30
16/30
13/30

Note: where not listed, f (r|D) < 3× 10−7

• a rectangular area of n = 525 pixels was chosen as the region of interest at the same location in
each image.

• data were scaled by the correspondence analysis method (Benali et al. 1993). With this scaling,
the noise on the scintigraphic data is approximately isotropic Gaussian (Benali et al. 1993),
satisfying the model assumptions (10).

It is interesting to compare methods for selection of relevant principal components. The approximate
posterior distribution of rank (77) and the ARD Property (Remark 6) infer significantly different
optimal rank (Table 5). For comparison, we also inferred the rank of the data via (i) Variational
PCA (VPCA) (Bishop 1999), and (ii) the ad hoc criterion of cumulative percentage of total variation
(Jolliffe 2002) (Figure 2). Method (i) is initialized randomly, potentially yielding different results for
each run, and so we performed 30 trials. Relative frequency of inferred rank using the ARD Property
of this VPCA technique are included in Table 5. For method (ii), r = 5 was chosen.

It is difficult to compare performance of the methods since the true dimensionality is not known.
From a medical point of view, the number of physiological factors should be 4 or 5. This estimate
is supported by the ad hoc criterion (Figure 2). From this perspective, the formal methods appear
to overestimate significantly the number of relevant principal components (PCs). The reason for this
can be understood by reconstructing the data using the number of PCs, r, recommended by each
method (Table 6). Four consecutive frames of the actual scintigraphic data are displayed in the first
row. Though the signal-to-noise ratio is poor, clearly functional variation is visible in the central
part of the left kidney and in the upper part of the right kidney, which cannot be accounted for by
noise. The same frames of the sequence, reconstructed from r = 5 PCs (Table 6, second row), fail
to capture this functional information. In contrast, the functional information is apparent on the
sequence reconstructed using the Bayesian estimate—i.e. r = 19 PCs—and, indeed, on sequences
reconstructed using r > 19 PCs, such as the r = 45 choice suggested by the ARD Property of OVPCA
(Table 6, last row).
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Figure 2: Cumulative percentage of total variation for scintigraphic data. For clarity, only the first 20
elements are shown out of a total of p = 120.
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Table 6: Reconstruction of scintigraphic data for different numbers of PCs
number of PCs used frames 48–51 of the dynamic image sequence

original images (r = 120)

Ad hoc criterion (r = 5)

Bayesian selection (r = 19)

ARD property (r = 45)

7.3 Discussion of OVPCA and its Performance

The simulated data study in the last section suggests that the proposed posterior rank distribution
(77) is capable of correct inference, if the data comply with the model (Table 4). Furthermore, all but
one of the true simulated parameters are within the estimated uncertainty bounds (Tables 1–3). Note,
however, that some true values are close to an uncertainty bound, suggesting that these inferred bounds
are not overly conservative. The scintigraphic data study demonstrates the contrast between“formally
modelled noise”and“unwanted structure artefacts”. The OVPCA procedure identified signal structure
which can not be considered as Gaussian-distributed noise. Notwithstanding this, some parametric
PCs identified as signal elements will be considered as unnecessary (i.e. noise) from a medical point-
of-view, and ad hoc criteria may be preferred. This could be accounted for in the automatic technique
by a better model of the noise. We note, however, that OVPCA appears to yield lower estimates
of rank than competing formal criteria (Table 5). This feature will be verified by further extensive
comparative studies.

The full factor analysis model (Anderson 1971) explicitly includes a common non-zero mean value
for the data columns, E [di] = µ. This was not considered as a part of the orthogonal model (13)
introduced in this paper. It is easy to introduce a common mean value for applications where it is
regarded as important, e.g. PCA mixtures (Tipping and Bishop 1998a). The model (13) can be readily
extended to contain the common mean value, as follows:

M(r) = ArLrXr + µ11,n,

with µ ∈ <p×1. The Variational Bayes approximation (Theorem 1) for this model requires more
algebra, but is straightforward. However, Proposition 1 is not then valid. Hence, the iterative algo-
rithm arising in place of OVPCA (Algorithm 1) has the following disadvantages: (i) computational
complexity is much higher; and (ii) posterior means are not collinear with the principal components
of PCA.

We note the following features of the OVPCA algorithm:

• Convergence is very fast in comparison to other iterative methods (Bishop 1999). The stopping
rule on increments of parameter estimates (e.g. ω̂) can be set close to the machine precision.

• The method does not involve any numerically sensitive operations like inversions. Hence, no
regularization terms are required.
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The OVPCA model includes the assumption of isotropic Gaussian noise which might be relaxed in
further work. The extension of the model (13) for non-isotropic Gaussian noise is straightforward.
So is the application of the Variational Bayes estimation method in this case. However, the resulting
posterior distributions are of the generalized Bingham type (Khatri and Mardia 1977), whose moments
are not known to us. This suggests that efficient numerical evaluation—possible for OVPCA—cannot
be achieved in the non-isotropic noise case. Furthermore, it implies that the parametric PCs of such
an extended model are not collinear with PCs extracted by PCA (7). This latter point may explain
the unavailability in the literature of non-asymptotic sampling distributions of principal components
for non-Gaussian noise distributions (Jolliffe 2002).

8 Conclusion

A complete Bayesian framework for PCA has been proposed in this paper. The key step was to force
orthogonality in the governing model (13), and in this way to ensure a decomposition with only a
countable (2r) sign-based ambiguity, and in turn, only a countable number of modes in the posterior
distribution. The proposed Variational Bayes (VB) procedure was shown to approximate each mode
of the posterior distribution, and yielded a von-Mises-Fisher distribution on each of the orthogonal
parameters, Ar and Xr. Using ideas from orthogonal statistics, we proved a proposition which es-
tablished the mean of the posterior distribution of Ar (called the parametric principal components)
as collinear with the principal components (PCs) produced by PCA. Because of this collinearity, the
resulting iterative algorithm—known as OVPCA—can be initialized easily by the PCs. The OVPCA
algorithm therefore converges quickly and robustly to the VB approximation of the posterior dis-
tribution. Furthermore, a novel approximation of the associated hypergeometric function of matrix
argument was developed to ensure numerical efficiency.

Among the key results are

• an approximate posterior distribution of rank r, corresponding to the number of relevant PCs
in the data in classical PCA.

• uncertainty bounds on parametric components, Ar, can be interpreted as uncertainty bounds on
PCs.

Under the assumption of isotropic Gaussian noise (10), the Bayesian procedure presented in this
paper yields parametric PCs proportional to the classical PCs produced by PCA. This points to the
optimality of PCA under these conditions. Currently, the fast identification of marginals via OVPCA
also depends on the isotropic Gaussian noise assumption. Clearly, however, the VB framework offers
a powerful tool for approximation of posterior distributions of parametric principal components for
non-isotropic—and even some non-Gaussian (exponential family)—noise classes, without the need for
asymptotic assumptions. Further work in orthogonal statistics and approximation will be necessary
to achieve efficient algorithms in these cases.

Appendix A: The von-Mises-Fisher Matrix Distribution

Moments of the von-Mises-Fisher matrix distribution are now considered. Proofs of all unproven
results are available in (Khatri and Mardia 1977).

A.1 Definition

The von-Mises-Fisher pdf of matrix random variable, Z ∈ <p×r, restricted to Z ′Z = Ir, is given by:

f (Z|F ) = M (F ) =
1

κ (p, F ′F )
exp

(
tr

(
F ′Z

))
, (A.1)

κ
(
p, FF ′

)
= 0F1

(
1
2
p,

1
4
F ′F

)
C (p, r) , (A.2)
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where F ∈ <p×r is a matrix parameter of the same dimensions as Z, and κ (p, F ′F ) is the normalizing
coefficient. 0F1(·) denotes a hypergeometric function of matrix argument F ′F (James 1964), which is
treated separately in Appendix B. C (p, r) denotes the area of the relevant Stiefel manifold Sp,r (23).
Without loss of generality it is assumed that r ≤ p.

(A.1) is a Gaussian distribution with restriction Z ′Z = Ir, re-normalized on Sp,r. It is governed
by a single matrix parameter F . Consider the full4 SVD decomposition,

F = UFLFV
′
F ,

of the parameter F , where UF ∈ <p×p, LF ∈ <p×r, VF ∈ <r×r. Then, the maximum of (A.1) is
reached at

Ẑ = UF ;rV
′
F . (A.3)

Flatness of the distribution is controlled by LF . When lF = 0r,1, the distribution is uniform on Sp,r

(Mardia and Jupp 2000). For lF,i → ∞, ∀i = 1 . . . n, the distribution converges to a Dirac delta
function at Ẑ (A.3).

A.2 First Moment

Define the transformed variable
Y = U ′FZVF . (A.4)

It can be shown that κ (p, F ′F ) = κ
(
p, L2

F

)
. The pdf of Y is then

f (Y |F ) =
1

κ
(
p, L2

F

) exp (tr (LFY )) =
1

κ
(
p, L2

F

) exp
(
l′Fy

)
, (A.5)

where y = diag (Y ). Hence
f (Y |F ) ∝ f (y|lF ) . (A.6)

The first moment of (A.5) is given by

E [Y |LF ] = Ψ, (A.7)

where Ψ = diag (ψ) is a diagonal matrix whose diagonal elements are:

ψi =
∂

∂lF,i
ln 0F1

(
1
2
p,

1
4
L2

F

)
, i = 1, . . . , r. (A.8)

We will denote ψ and Ψ by

ψ = G (p, lF ) , (A.9)
Ψ = G (p, LF ) , (A.10)

where G (p, LF ) = diag (G (p, lF )). The mean value of the original random variable, Z, is then (Downs
1972)

E [Z] = UF ;rΨV ′
F ;r = UF ;rG (p, LF )V ′

F ;r. (A.11)

A.3 Second Moment and Uncertainty Bounds

The second central moment of the transformed variable y = diag (Y ) (A.4) is given by

E
[
yy′ − E [y]E [y]′

]
= Φ, (A.12)

with elements,

φi,j =
∂

∂lF,i∂lF,j
ln 0F1

(
1
2
p,

1
4
L2

F

)
, i, j = 1, . . . , r. (A.13)

4as opposed to the economic SVD used in Section 1.
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Transformation (A.4) is one-to-one, with unit Jacobian. Hence, uncertainty bounds on variables Y
and Z can be mutually mapped using (A.4). However, the mapping y = diag (Y ) is many-to-one,
and so also is Z → y. Conversion of second moments (and uncertainty bounds) of y to those of Z
(via (A.4), (A.5)) is therefore available in implicit form only. For example, the upper bound subspace
within the support of Z is expressible as follows:

Z =
{
Z| diag

(
U ′FZVF

)
= y

}
,

where y is an appropriately chosen upper bound on y. The lower bound, Z, is similarly constructed
via a lower bound, y, on y.

It remains, then, to choose appropriately the bounds y and y from (A.5). We use the first two
moments, (A.7) and (A.12), to approximate (A.5) by a Gaussian. The Maximum Entropy (MaxEnt)
principle (Jaynes 2003) ensures that uncertainty bounds for this MaxEnt Gaussian approximation of
(A.5) enclose the uncertainty bounds of all distributions with the same first two moments. Highest
Posterior Density (HPD) regions, and thus uncertainty bounds, for the Gaussian distribution with
moments (A.8) and (A.13) are readily proposed. For example:

Pr
(
−2

√
φi < (yi − ψi) ≤ 2

√
φi

)
.= 0.95. (A.14)

Therefore, we choose

yi = ψi + 2
√
φi, (A.15)

yi = ψi − 2
√
φi. (A.16)

The required vector bounds are then constructed as y = [y1, . . . , yr]
′, and similarly for y. The geometric

relationship between variables Z and y is illustrated graphically for p = 2 and n = r in Figure 1.

Appendix B: Evaluation of Hypergeometric Functions

Numerical evaluation of the OVPCA algorithm requires evaluation of the following transformations of
the hypergeometric function, 0F1, of matrix argument: (i) its natural logarithm (ln), for Bayesian rank
selection (77), and (ii) the first derivative of the ln, required for the first moment of the von-Mises-
Fisher distribution (A.8). Analytical closed-form solutions are not known to us. Recently, a very good
approximation of 0F1 of matrix argument was developed (Butler and Wood 2003). It is based on the
Laplace approximation at the saddle point. It yields reliable results for use in (i). Unfortunately, the
first derivative of ln of this approximation for higher singular values, i.e. li � 1, are greater than
one, thus placing the corresponding mean value E [yi|lF ] (A.8) outside of the unit circle, which is not
permissible (Figure 1). Therefore, we now develop an approximation which overcomes this difficulty,
by first considering the hypergeometric function 0F1 of scalar argument.

B.1 Hypergeometric function of scalar argument

The natural logarithm (ln) of the hypergeometric function, 0F1

(
1
2p,

1
4s

2
)
, of a scalar argument can be

expressed as

ln 0F1

(
1
2
p,

1
4
s2

)
= lnB

(
1
2
p− 1, s

)
+

(
1
2
p− 1

)
(ln 2− ln (s)) + lnΓ

(
1
2
p

)
, (B.17)

where B denotes the modified Bessel function of the first kind (Abramowitz and Stegun 1972). (B.17)
is plotted as a function of s in Figure 3 (left), for p = 5. The first two derivatives of (B.17) are:

d

ds
ln 0F1

(
1
2
p,

1
4
s2

)
= 2

B
(

1
2p, 2s

)
B

(p
2 − 1, 2s

) , (B.18)

d2

ds2
ln 0F1

(
1
2
p,

1
4
s2

)
= 4

B
(p

2 + 1, 2s
)

B
(p

2 − 1, 2s
) − 4

[
B

(
1
2p, 2s

)
B

(p
2 − 1, 2s

)]2

+ 2
B

(
1
2p, 2s

)
sB

(p
2 − 1, 2s

) . (B.19)
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The first derivative is illustrated in Figure 3 (right), for the same case, (p = 5). (B.18) can be expressed
as a continuous fraction expansion (Abramowitz and Stegun 1972):

d

ds
ln 0F1

(
1
2
p,

1
4
s2

)
=

si

p
2

1 +
1
4
s2
i

( p
2
+1)( p

2
+2)

»
1+

1
4 s2

i
( p
2 +2)( p

2 +3)+[1+ ...
... ]

–
 . (B.20)

Furthermore, (B.19) can be expressed in terms of (B.18) and, therefore, (B.20). Expansion (B.20)
converges very fast for s < p. However, when s� p (say s > 10p) the convergence is quite slow. For
large s, a more numerically efficient approximation is obtained via a Taylor expansion of (B.18) at
s→∞:

d

ds
ln 0F1

(
1
2
p,

1
4
s2

)
= 1−

(
p− 1
2s

)
exp

(
−p− 3

4s

)
+ o (5) . (B.21)

This gives an excellent approximation in the case s� p.

B.2 Approximation of 0F1 of matrix argument by 0F1 of scalar arguments

Consider the special case of the von-Mises-Fisher matrix distribution (A.1) with Z = [z1,z2] ∈ <p×2,
and parameter F = [f1,f2] ∈ <p×2, with added constraint that f1,f2 are mutually orthogonal:
f ′1f2 = 0. Then, the marginal distribution of z1 is Khatri and Mardia (1977):

f (z1|F ) = 0F1

(
1
2 (p− 1) , 1

4 (Ip − z1z
′
1)f2f

′
2

)
0F1

(
1
2p,

1
4FF

′
)
C (p, 1)

exp
(
tr

(
f ′1z1

))
. (B.22)

Note that the maximum (A.3) of the full pdf (A.1) occurs at:

ẑ1 = arg max
z1

f (Z|F ) = f1/
√
f ′1f1.

This is orthogonal to f2, i.e. ẑ′1f2 = 0. Therefore, the contribution of the quadratic term in the
argument of 0F1 in the numerator of (B.22) would be negligible for values of z1 around ẑ1. Hence, we
make the approximation

0F1

(
1
2

(p− 1) ,
1
4

(
Ip − z1z

′
1

)
f2f

′
2

)
≈ 0F1

(
1
2

(p− 1) ,
1
4
f2f

′
2

)
. (B.23)

This will be satisfied when f (z1|F ) (B.22) is not diffuse, i.e. when f1 is large (see Section A.1). Under
this approximation, the leading fraction in (B.22) is independent of z1, and thus acts as a normalizing
coefficient. Distribution (B.22) is then of the von-Mises-Fisher type, namely f (z1|F ) ≈ f (z1|f1) =
M (f1) (A.1). Comparing the normalizing coefficient in (B.22) with that in (A.2) yields

0F1

(
1
2
p,

1
4
F ′F

)
≈ 0F1

(
1
2
p,

1
4
f1f

′
1

)
0F1

(
1
2

(p− 1) ,
1
4
f2f

′
2

)
. (B.24)

Extending (B.22) into higher dimension and using the chain rule of pdfs we obtain an approximation
of the following type:

0F1

(
1
2
p,

1
4
L2

F

)
≈

p∏
i=1

0F1

(
1
2
p− i+ 1,

1
4
l2F,i

)
. (B.25)

Appendix C: Remaining Distributions

C.1 Truncated Normal Distribution

The truncated normal distribution of random variable x is defined as normal—with functional form
N

(
µ, s2

)
—on a restricted support a < x ≤ b. Its pdf is

f (x|µ, s; (a, b]) =

√
2 exp

(
−1

2

(x−µ
s

)2
)

s
√
π (erf (β)− erf (α))

χ ((a, b]) , (C.26)
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where α = a−µ

s
√

2
, β = b−µ

s
√

2
. The first two moments of (C.26) are

x̂ = µ− s ζ (µ, s) ,

x̂2 = s2 + µx̂− sρ (µ, s) ,

which depend on the auxiliary functions

ζ (µ, s) =

√
2

[
exp

(
−β2

)
− exp

(
−α2

)]
√
π (erf (β)− erf (α))

, (C.27)

ρ (µ, s) =

√
2

[
b exp

(
−β2

)
− a exp

(
−α2

)]
√
π (erf (β)− erf (α))

. (C.28)

(C.27) and (C.28) with vector arguments—e.g. ρ (m, s)—are evaluated element-wise. HPD regions
for this distribution can also be obtained. However, in our examples (Section 7), we use HPD regions
calculated from the approximating MaxEnt (non-truncated) normal distribution, namely

max
(
a,−2

√
x̂2

)
< x− x̂ < min

(
b, 2

√
x̂2

)
. (C.29)

The MaxEnt principle was already invoked in Appendix A.3.

C.2 Gamma Distribution

The Gamma distribution has pdf

f (x|a, b) = G (a, b) =
ba

Γ (a)
xa−1 exp (−bx)χ ([0,∞)) ,

where a > 0, and b > 0, and Γ (a) is the Gamma function (Abramowitz and Stegun 1972) evaluated
at a. Its first moment, required in (53), is:

x̂ =
a

b
.
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